首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For multifactor experimental designs in which the levels of at least one of the factors are ordered we show how to construct components that provide a deep nonparametric scrutiny of the data. The components assess generalised correlations and the resulting tests include and extend the Page and umbrella tests. Application of the tests described is straightforward. Orthonormal polynomials on the ANOVA responses and the factors are required and the formulae needed are given subsequently. These depend on the moments of the responses and of each factor and are easily calculated. Products of at least two of these orthonormal polynomials are then used as inputs into standard ANOVA routines. For example, using the first order orthonormal polynomial on factor A and the second order orthonormal polynomial on the ANOVA response will assess if, with increasing levels of factor A there is an umbrella response with either an increase and then a decrease or a decrease and then an increase.  相似文献   

2.
A number of nonparametric tests are compared empirically for a randomized block layout. We assess tests appropriate for when the data are not consistent with normality or when outliers invalidate traditional analysis of variance (ANOVA) tests. The objective is to assess, within this setting, tests that use ranks within blocks, the rank transform procedure that ranks the complete sample and continuous analogs of the Cochran–Mantel–Haenszel tests. The usual linear model is assumed, and our primary foci are tests of equality of means and component tests that assess linear and quadratic trends in the means. These tests include the traditional Page and Friedman tests. We conclude that the rank transform tests have competitive power and warrant greater use than is currently apparent.  相似文献   

3.
The analysis of data from eseperisental designs is often hampered by the lack of more than one procedure available for the analysis, especially when that procedure is based on assumptions which do not apply in the situation at hand. In this paper tvo classes of alternative procedures are discussed and compared, One is the aligned ranks procedure which first standardises the data by subtracting an appropriate estimate of location, then replaces the data with ranks t and finally uses an appropriate test statistic which has asymptotically a chi-square distribution The second procedure is the rank transform which first replaces all of the data with the ranks, and then employs the usual parametric methods, but computed on the ranks instead of the data Some Monte Carlo simulations for a test of interaction in a two way layout with replication enable the robustness and pover of these tvo methods to be compared with the usual analysis of variancs.  相似文献   

4.
A new statistical procedure for testing normality is proposed. The Q statistic is derived as the ratio of two linear combinations of the ordered random observations. The coefficients of the linear combinations are utilizing the expected values of the order statistics from the standard normal distribution. This test is omnibus to detect the deviations from normality that result from either skewness or kurtosis. The statistic is independent of the origin and the scale under the null hypothesis of normality, and the null distribution of Q can be very well approximated by the Cornish-Fisher expansion. The powers for various alternative distributions were compared with several other test statistics by simulations.  相似文献   

5.
In RSS, the variance of observations in each ranked set plays an important role in finding an optimal design for unbalanced RSS and in inferring the population mean. The empirical estimator (i.e., the sample variance in a given ranked set) is most commonly used for estimating the variance in the literature. However, the empirical estimator does not use the information in the entire data over different ranked sets. Further, it is highly variable when the sample size is not large enough, as is typical in RSS applications. In this paper, we propose a plug-in estimator for the variance of each set, which is more efficient than the empirical one. The estimator uses a result in order statistics which characterizes the cumulative distribution function (CDF) of the rth order statistics as a function of the population CDF. We analytically prove the asymptotic normality of the proposed estimator. We further apply it to estimate the standard error of the RSS mean estimator. Both our simulation and empirical study show that our estimators consistently outperform existing methods.  相似文献   

6.
The main purpose of this paper is to give an algorithm to attain joint normality of non-normal multivariate observations through a new power normal family introduced by the author (Isogai, 1999). The algorithm tries to transform each marginal variable simultaneously to joint normality, but due to a large number of parameters it repeats a maximization process with respect to the conditional normal density of one transformed variable given the other transformed variables. A non-normal data set is used to examine performance of the algorithm, and the degree of achievement of joint normality is evaluated by measures of multivariate skewness and kurtosis. Besides the above topic, making use of properties of our power normal family, we discuss not only a normal approximation formula of non-central F distributions in the frame of regression analysis but also some decomposition formulas of a power parameter, which appear in a Wilson-Hilferty power transformation setting.  相似文献   

7.
A nonparametric control chart for variance is proposed. The chart is constructed following the change-point approach through the recursive use of the squared ranks test for variance. It is capable of detecting changes in the behaviour of individual observations with performance similar to a self-starting CUSUM chart for scale when normality is assumed, and a relatively better power when assessing nonnormal observations. A comparison is also made with two equivalent nonparametric charts based on Mood and Ansari-Bradley statistics. When dealing with symmetrical distributions, the proposed chart shows smaller (better) out-of-control average run length (ARL), and a competing performance otherwise. In addition, sensitivity to changes in mean and variance at the same time was tested. Extensive Monte Carlo simulation was used to measure performance, and a practical example is provided to illustrate how the proposed control chart can be implemented in practice.  相似文献   

8.
Iman (1974) and Conover and Iman (1976) have shown by means of simulation studies that a rank transform, whereby the ordinary F-tests are applied to the ranks of the original observations in two-way experimental designs, presents a remarkably powerful method of analysis. In the present study it is shown that this rank transform is closely related to the procedure proposed by Lemmer and Stoker (1967) for the two-way analysis of variance. The main conclusions are that the Iman tests are generally slightly more powerful than those of Lemmer and Stoker, but that in the presence of interaction the latter tests for main effects are safer to use than the former because interaction tends to make the Iman tests for main effects significant even if no main effects exist.  相似文献   

9.
It is well documented in the literature that the sample skewness and excess kurtosis can be severely biased in finite samples. In this paper, we derive analytical results for their finite-sample biases up to the second order. In general, the bias results depend on the cumulants (up to the sixth order) as well as the dependency structure of the data. Using an AR(1) process for illustration, we show that a feasible bias-correction procedure based on our analytical results works remarkably well for reducing the bias of the sample skewness. Bias-correction works reasonably well also for the sample kurtosis under some moderate degree of dependency. In terms of hypothesis testing, bias-correction offers power improvement when testing for normality, and bias-correction under the null provides also size improvement. However, for testing nonzero skewness and/or excess kurtosis, there exist nonnegligible size distortions in finite samples and bias-correction may not help.  相似文献   

10.
Conover and Iman (1976), Iman (1974), and Iman and Conover (1976) have found the rank transform test to be robust and powerful when testing for interaction in experimental designs.The current study shows that, insofar as tests for interactions

are concerned, the rank transform test is robust and powerful in some circumstances but is dramatically nonrobust and manifests power significantly below that of the usual F test in some cases. Therefore, this procedure should be used only withcaution when employed in designs suchas those examined here.  相似文献   

11.
Abstract

Quetelet’s data on Scottish chest girths are analyzed with eight normality tests. In contrast to Quetelet’s conclusion that the data are fit well by what is now known as the normal distribution, six of eight normality tests provide strong evidence that the chest circumferences are not normally distributed. Using corrected chest circumferences from Stigler, the χ2 test no longer provides strong evidence against normality, but five commonly used normality tests do. The D’Agostino–Pearson K2 and Jarque–Bera tests, based only on skewness and kurtosis, find that both Quetelet’s original data and the Stigler-corrected data are consistent with the hypothesis of normality. The major reason causing most normality tests to produce low p-values, indicating that Quetelet’s data are not normally distributed, is that the chest circumferences were reported in whole inches and rounding of large numbers of observations can produce many tied values that strongly affect most normality tests. Users should be cautious using many standard normality tests if data have ties, are rounded, and the ratio of the standard deviation to rounding interval is small.  相似文献   

12.
In this article, we describe a new approach to compare the power of different tests for normality. This approach provides the researcher with a practical tool for evaluating which test at their disposal is the most appropriate for their sampling problem. Using the Johnson systems of distribution, we estimate the power of a test for normality for any mean, variance, skewness, and kurtosis. Using this characterization and an innovative graphical representation, we validate our method by comparing three well-known tests for normality: the Pearson χ2 test, the Kolmogorov–Smirnov test, and the D'Agostino–Pearson K 2 test. We obtain such comparison for a broad range of skewness, kurtosis, and sample sizes. We demonstrate that the D'Agostino–Pearson test gives greater power than the others against most of the alternative distributions and at most sample sizes. We also find that the Pearson χ2 test gives greater power than Kolmogorov–Smirnov against most of the alternative distributions for sample sizes between 18 and 330.  相似文献   

13.
This paper studies four methods for estimating the Box-Cox parameter used to transform data to normality. Three of these are based on optimizing test statistics for standard normality tests (the Shapiro-Wilk. skewness, and kurtosis tests); the fourth uses the maximum likelihood estimator of the Box-Cox parameter. The four methods are compared and evaluated with a simulation study, where their performances under different skewness and kurtosis conditions are analyzed. The estimator based on optimizing the Shapiro-Wilk statistic generally gives rise to the best transformations, while the maximum likelihood estimator performs almost as well. Estimators based on optimizing skewness and kurtosis do not perform well in general.  相似文献   

14.
Leptokurtosis and skewness characterize the distributions of the returns for many financial instruments traded in security markets. These departures from normality can adversely affect the efficiency of least squares estimates of the β's in the single index or market model. The proposed new partially adaptive estimation techniques accommodate skewed and fat tailed distributions. The empirical investigation, which is the first application of this procedure in regression models, reveals that both skewness and kurtosis can affect β estimates.  相似文献   

15.
The procedure of statistical discrimination Is simple in theory but so simple in practice. An observation x0possibly uiultivariate, is to be classified into one of several populations π1,…,πk which have respectively, the density functions f1(x), ? ? ? , fk(x). The decision procedure is to evaluate each density function at X0 to see which function gives the largest value fi(X0) , and then to declare that X0 belongs to the population corresponding to the largest value. If these den-sities can be assumed to be normal with equal covariance matricesthen the decision procedure is known as Fisher’s linear discrimi-nant function (LDF) method. In the case of unequal covariance matrices the procedure is called the quadratic discriminant func-tion (QDF) method. If the densities cannot be assumed to be nor-mal then the LDF and QDF might not perform well. Several different procedures have appeared in the literature which offer discriminant procedures for nonnormal data. However, these pro-cedures are generally difficult to use and are not readily available as canned statistical programs.

Another approach to discriminant analysis is to use some sortof mathematical trans format ion on the samples so that their distribution function is approximately normal, and then use the convenient LDF and QDF methods. One transformation that:applies to all distributions equally well is the rank transformation. The result of this transformation is that a very simple and easy to use procedure is made available. This procedure is quite robust as is evidenced by comparisons of the rank transform results with several published simulation studies.  相似文献   

16.
In this paper, we construct a new ranked set sampling protocol that maximizes the Pitman asymptotic efficiency of the signed rank test. The new sampling design is a function of the set size and independent order statistics. If the set size is odd and the underlying distribution is symmetric and unimodal, then the new sampling protocol quantifies only the middle observation. On the other hand, if the set size is even, the new sampling design quantifies the two middle observations. This data collection procedure for use in the signed rank test outperforms the data collection procedure in the standard ranked set sample. We show that the exact null distribution of the signed rank statistic WRSS+ based on a data set generated by the new ranked set sample design for odd set sizes is the same as the null distribution of the simple random sample signed rank statistic WSRS+ based on the same number of measured observations. For even set sizes, the exact null distribution of WRSS+ is simulated.  相似文献   

17.
Although regression estimates are quite robust to slight departure from normality, symmetric prediction intervals assuming normality can be highly unsatisfactory and problematic if the residuals have a skewed distribution. For data with distributions outside the class covered by the Generalized Linear Model, a common way to handle non-normality is to transform the response variable. Unfortunately, transforming the response variable often destroys the theoretical or empirical functional relationship connecting the mean of the response variable to the explanatory variables established on the original scale. Further complication arises if a single transformation cannot both stabilize variance and attain normality. Furthermore, practitioners also find the interpretation of highly transformed data not obvious and often prefer an analysis on the original scale. The present paper presents an alternative approach for handling simultaneously heteroscedasticity and non-normality without resorting to data transformation. Unlike classical approaches, the proposed modeling allows practitioners to formulate the mean and variance relationships directly on the original scale, making data interpretation considerably easier. The modeled variance relationship and form of non-normality in the proposed approach can be easily examined through a certain function of the standardized residuals. The proposed method is seen to remain consistent for estimating the regression parameters even if the variance function is misspecified. The method along with some model checking techniques is illustrated with a real example.  相似文献   

18.
Phase I of control analysis requires large amount of data to fit a distribution and estimate the corresponding parameters of the process under study. However, when only individual observations are available, and no a priori knowledge exists, the presence of outliers can bias the analysis. A relatively recent and successful approach to address this situation is Tukey's Control Chart (TCC), a charting method that applies the Box Plot technique to estimate the control limits. This procedure has proven to be effective for symmetric distributions. However, when skewness is present the average run length performance diminishes significantly. This article proposes a modified version of TCC to consider skewness with minimum assumptions on the underlying distribution of observations. Using theoretical results and Monte Carlo simulation, the modified TCC is tested over several distributions proving a better representation of skewed populations, even in cases when only a limited number of observations are available.  相似文献   

19.
The pretest–posttest design is widely used to investigate the effect of an experimental treatment in biomedical research. The treatment effect may be assessed using analysis of variance (ANOVA) or analysis of covariance (ANCOVA). The normality assumption for parametric ANOVA and ANCOVA may be violated due to outliers and skewness of data. Nonparametric methods, robust statistics, and data transformation may be used to address the nonnormality issue. However, there is no simultaneous comparison for the four statistical approaches in terms of empirical type I error probability and statistical power. We studied 13 ANOVA and ANCOVA models based on parametric approach, rank and normal score-based nonparametric approach, Huber M-estimation, and Box–Cox transformation using normal data with and without outliers and lognormal data. We found that ANCOVA models preserve the nominal significance level better and are more powerful than their ANOVA counterparts when the dependent variable and covariate are correlated. Huber M-estimation is the most liberal method. Nonparametric ANCOVA, especially ANCOVA based on normal score transformation, preserves the nominal significance level, has good statistical power, and is robust for data distribution.  相似文献   

20.
In spatial statistics, models are often constructed based on some common, but possible restrictive assumptions for the underlying spatial process, including Gaussianity as well as stationarity and isotropy. However, these assumptions are frequently violated in applied problems. In order to simultaneously handle skewness and non-homogeneity (i.e., non-stationarity and anisotropy), we develop the fixed rank kriging model through the use of skew-normal distribution for its non-spatial latent variables. Our approach to spatial modeling is easy to implement and also provides a great flexibility in adjusting to skewed and large datasets with heterogeneous correlation structures. We adopt a Bayesian framework for our analysis, and describe a simple MCMC algorithm for sampling from the posterior distribution of the model parameters and performing spatial prediction. Through a simulation study, we demonstrate that the proposed model could detect departures from normality and, for illustration, we analyze a synthetic dataset of CO\(_2\) measurements. Finally, to deal with multivariate spatial data showing some degree of skewness, a multivariate extension of the model is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号