首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In clinical trials survival endpoints are usually compared using the log-rank test. Sequential methods for the log-rank test and the Cox proportional hazards model are largely reported in the statistical literature. When the proportional hazards assumption is violated the hazard ratio is ill-defined and the power of the log-rank test depends on the distribution of the censoring times. The average hazard ratio was proposed as an alternative effect measure, which has a meaningful interpretation in the case of non-proportional hazards, and is equal to the hazard ratio, if the hazards are indeed proportional. In the present work we prove that the average hazard ratio based sequential test statistics are asymptotically multivariate normal with the independent increments property. This allows for the calculation of group-sequential boundaries using standard methods and existing software. The finite sample characteristics of the new method are examined in a simulation study in a proportional and a non-proportional hazards setting.  相似文献   

2.
Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. With the emergence of immunotherapy and novel targeted therapies, departure from the proportional hazard assumption is not rare in nowadays clinical research. Under non-proportional hazards, the hazard ratio does not have a straightforward clinical interpretation, and the log-rank test is no longer the most powerful statistical test even though it is still valid. Nevertheless, the log-rank test and the hazard ratio are still the primary analysis tools, and traditional approaches such as sample size increase are still proposed to account for the impact of non-proportional hazards. The weighed log-rank test and the test based on the restricted mean survival time (RMST) are receiving a lot of attention as a potential alternative to the log-rank test. We conduct a simulation study comparing the performance and operating characteristics of the log-rank test, the weighted log-rank test and the test based on the RMST, including a treatment effect estimation, under different non-proportional hazards patterns. Results show that, under non-proportional hazards, the hazard ratio and weighted hazard ratio have no straightforward clinical interpretation whereas the RMST ratio can be interpreted regardless of the proportional hazards assumption. In terms of power, the RMST achieves a similar performance when compared to the log-rank test.  相似文献   

3.
We introduce a new two-sample inference procedure to assess the relative performance of two groups over time. Our model-free method does not assume proportional hazards, making it suitable for scenarios where nonproportional hazards may exist. Our procedure includes a diagnostic tau plot to identify changes in hazard timing and a formal inference procedure. The tau-based measures we develop are clinically meaningful and provide interpretable estimands to summarize the treatment effect over time. Our proposed statistic is a U-statistic and exhibits a martingale structure, allowing us to construct confidence intervals and perform hypothesis testing. Our approach is robust with respect to the censoring distribution. We also demonstrate how our method can be applied for sensitivity analysis in scenarios with missing tail information due to insufficient follow-up. Without censoring, Kendall's tau estimator we propose reduces to the Wilcoxon-Mann–Whitney statistic. We evaluate our method using simulations to compare its performance with the restricted mean survival time and log-rank statistics. We also apply our approach to data from several published oncology clinical trials where nonproportional hazards may exist.  相似文献   

4.
In the analysis of survival times, the logrank test and the Cox model have been established as key tools, which do not require specific distributional assumptions. Under the assumption of proportional hazards, they are efficient and their results can be interpreted unambiguously. However, delayed treatment effects, disease progression, treatment switchers or the presence of subgroups with differential treatment effects may challenge the assumption of proportional hazards. In practice, weighted logrank tests emphasizing either early, intermediate or late event times via an appropriate weighting function may be used to accommodate for an expected pattern of non-proportionality. We model these sources of non-proportional hazards via a mixture of survival functions with piecewise constant hazard. The model is then applied to study the power of unweighted and weighted log-rank tests, as well as maximum tests allowing different time dependent weights. Simulation results suggest a robust performance of maximum tests across different scenarios, with little loss in power compared to the most powerful among the considered weighting schemes and huge power gain compared to unfavorable weights. The actual sources of non-proportional hazards are not obvious from resulting populationwise survival functions, highlighting the importance of detailed simulations in the planning phase of a trial when assuming non-proportional hazards.We provide the required tools in a software package, allowing to model data generating processes under complex non-proportional hazard scenarios, to simulate data from these models and to perform the weighted logrank tests.  相似文献   

5.
This paper considers two-sample nonparametric comparison of survival function when data are subject to left truncation and interval censoring. We propose a class of rank-based tests, which are generalization of weighted log-rank tests for right-censored data. Simulation studies indicate that the proposed tests are appropriate for practical use.  相似文献   

6.
The proportional hazards regression model of Cox(1972) is widely used in analyzing survival data. We examine several goodness of fit tests for checking the proportionality of hazards in the Cox model with two-sample censored data, and compare the performance of these tests by a simulation study. The strengths and weaknesses of the tests are pointed out. The effects of the extent of random censoring on the size and power are also examined. Results of a simulation study demonstrate that Gill and Schumacher's test is most powerful against a broad range of monotone departures from the proportional hazards assumption, but it may not perform as well fail for alternatives of nonmonotone hazard ratio. For the latter kind of alternatives, Andersen's test may detect patterns of irregular changes in hazards.  相似文献   

7.
A proper log-rank test for comparing two waiting (i.e. sojourn, gap) times under right censored data has been absent in the survival literature. The classical log-rank test provides a biased comparison even under independent right censoring since the censoring induced on the time since state entry depends on the entry time unless the hazards are semi-Markov. We develop test statistics for comparing K waiting time distributions from a multi-stage model in which censoring and waiting times may be dependent upon the transition history in the multi-stage model. To account for such dependent censoring, the proposed test statistics utilize an inverse probability of censoring weighted (IPCW) approach previously employed to define estimators for the cumulative hazard and survival function for waiting times in multi-stage models. We develop the test statistics as analogues to K-sample log-rank statistics for failure time data, and weak convergence to a Gaussian limit is demonstrated. A simulation study demonstrates the appropriateness of the test statistics in designs that violate typical independence assumptions for multi-stage models, under which naive test statistics for failure time data perform poorly, and illustrates the superiority of the test under proportional hazards alternatives to a Mann–Whitney type test. We apply the test statistics to an existing data set of burn patients.  相似文献   

8.
In survival analysis, it is routine to test equality of two survival curves, which is often conducted by using the log-rank test. Although it is optimal under the proportional hazards assumption, the log-rank test is known to have little power when the survival or hazard functions cross. To test the overall homogeneity of hazard rate functions, we propose a group of partitioned log-rank tests. By partitioning the time axis and taking the supremum of the sum of two partitioned log-rank statistics over different partitioning points, the proposed test gains enormous power for cases with crossing hazards. On the other hand, when the hazards are indeed proportional, our test still maintains high power close to that of the optimal log-rank test. Extensive simulation studies are conducted to compare the proposed test with existing methods, and three real data examples are used to illustrate the commonality of crossing hazards and the advantages of the partitioned log-rank tests.  相似文献   

9.
The standard log-rank test has been extended by adopting various weight functions. Cancer vaccine or immunotherapy trials have shown a delayed onset of effect for the experimental therapy. This is manifested as a delayed separation of the survival curves. This work proposes new weighted log-rank tests to account for such delay. The weight function is motivated by the time-varying hazard ratio between the experimental and the control therapies. We implement a numerical evaluation of the Schoenfeld approximation (NESA) for the mean of the test statistic. The NESA enables us to assess the power and to calculate the sample size for detecting such delayed treatment effect and also for a more general specification of the non-proportional hazards in a trial. We further show a connection between our proposed test and the weighted Cox regression. Then the average hazard ratio using the same weight is obtained as an estimand of the treatment effect. Extensive simulation studies are conducted to compare the performance of the proposed tests with the standard log-rank test and to assess their robustness to model mis-specifications. Our tests outperform the Gρ,γ class in general and have performance close to the optimal test. We demonstrate our methods on two cancer immunotherapy trials.  相似文献   

10.
Connections are established between the theories of weighted logrank tests and of frailty models. These connections arise because omission of a balanced covariate from a proportional hazards model generally leads to a model with non-proportional hazards, for which the simple logrank test is no longer optimal. The optimal weighting function and the asymptotic relative efficiencies of the simple logrank test and of the optimally weighted logrank test relative to the adjusted test that would be used if the covariate values were known, are expressible in terms of the Laplace transform of the hazard ratio for the distribution of the omitted covariate. For example if this hazard ratio has a gamma distribution, the optimal test is a member of the G class introduced by Harrington and Fleming (1982). We also consider positive stable, inverse Gaussian, displaced Poisson and two-point frailty distribution. Results are obtained for parametric and nonparametric tests and are extended to include random censoring. We show that the loss of efficiency from omitting a covariate is generally more important than the additional loss due to misspecification of the resulting non-proportional hazards model as a proportional hazards model. However two-point frailty distributions can provide exceptions to this rule. Censoring generally increases the efficiency of the simple logrank test to the adjusted logrank test.  相似文献   

11.
In biomedical studies where the event of interest is recurrent (e.g., hospitalization), it is often the case that the recurrent event sequence is subject to being stopped by a terminating event (e.g., death). In comparing treatment options, the marginal recurrent event mean is frequently of interest. One major complication in the recurrent/terminal event setting is that censoring times are not known for subjects observed to die, which renders standard risk set based methods of estimation inapplicable. We propose two semiparametric methods for estimating the difference or ratio of treatment-specific marginal mean numbers of events. The first method involves imputing unobserved censoring times, while the second methods uses inverse probability of censoring weighting. In each case, imbalances in the treatment-specific covariate distributions are adjusted out through inverse probability of treatment weighting. After the imputation and/or weighting, the treatment-specific means (then their difference or ratio) are estimated nonparametrically. Large-sample properties are derived for each of the proposed estimators, with finite sample properties assessed through simulation. The proposed methods are applied to kidney transplant data.  相似文献   

12.
Permutation tests for symmetry are suggested using data that are subject to right censoring. Such tests are directly relevant to the assumptions that underlie the generalized Wilcoxon test since the symmetric logistic distribution for log-errors has been used to motivate Wilcoxon scores in the censored accelerated failure time model. Its principal competitor is the log-rank (LGR) test motivated by an extreme value error distribution that is positively skewed. The proposed one-sided tests for symmetry against the alternative of positive skewness are directly relevant to the choice between usage of these two tests.

The permutation tests use statistics from the weighted LGR class normally used for making two-sample comparisons. From this class, the test using LGR weights (all weights equal) showed the greatest discriminatory power in simulations that compared the possibility of logistic errors versus extreme value errors.

In the test construction, a median estimate, determined by inverting the Kaplan–Meier estimator, is used to divide the data into a “control” group to its left that is compared with a “treatment” group to its right. As an unavoidable consequence of testing symmetry, data in the control group that have been censored become uninformative in performing this two-sample test. Thus, early heavy censoring of data can reduce the effective sample size of the control group and result in diminished power for discriminating symmetry in the population distribution.  相似文献   


13.
We examine the asymptotic and small sample properties of model-based and robust tests of the null hypothesis of no randomized treatment effect based on the partial likelihood arising from an arbitrarily misspecified Cox proportional hazards model. When the distribution of the censoring variable is either conditionally independent of the treatment group given covariates or conditionally independent of covariates given the treatment group, the numerators of the partial likelihood treatment score and Wald tests have asymptotic mean equal to 0 under the null hypothesis, regardless of whether or how the Cox model is misspecified. We show that the model-based variance estimators used in the calculation of the model-based tests are not, in general, consistent under model misspecification, yet using analytic considerations and simulations we show that their true sizes can be as close to the nominal value as tests calculated with robust variance estimators. As a special case, we show that the model-based log-rank test is asymptotically valid. When the Cox model is misspecified and the distribution of censoring depends on both treatment group and covariates, the asymptotic distributions of the resulting partial likelihood treatment score statistic and maximum partial likelihood estimator do not, in general, have a zero mean under the null hypothesis. Here neither the fully model-based tests, including the log-rank test, nor the robust tests will be asymptotically valid, and we show through simulations that the distortion to test size can be substantial.  相似文献   

14.
Tables of the one- and two-sample unweighted Cramer-von Mises statistics are given, and compared with the limiting distribution. The two-sample statistic may be useful in (for example) clinical trials when a proportional hazards assumption (which leads to the use of the log-rank test) is unjustified: see, for example, Schumacher (1984). It is often possible to stop clinical trials early if the Cramer-von Mises test (rather than say, the log-rank test) is employed.  相似文献   

15.
A fundamental concept in two-arm non-parametric survival analysis is the comparison of observed versus expected numbers of events on one of the treatment arms (the choice of which arm is arbitrary), where the expectation is taken assuming that the true survival curves in the two arms are identical. This concept is at the heart of the counting-process theory that provides a rigorous basis for methods such as the log-rank test. It is natural, therefore, to maintain this perspective when extending the log-rank test to deal with non-proportional hazards, for example, by considering a weighted sum of the “observed - expected” terms, where larger weights are given to time periods where the hazard ratio is expected to favor the experimental treatment. In doing so, however, one may stumble across some rather subtle issues, related to difficulties in the interpretation of hazard ratios, that may lead to strange conclusions. An alternative approach is to view non-parametric survival comparisons as permutation tests. With this perspective, one can easily improve on the efficiency of the log-rank test, while thoroughly controlling the false positive rate. In particular, for the field of immuno-oncology, where researchers often anticipate a delayed treatment effect, sample sizes could be substantially reduced without loss of power.  相似文献   

16.
With competing risks data, one often needs to assess the treatment and covariate effects on the cumulative incidence function. Fine and Gray proposed a proportional hazards regression model for the subdistribution of a competing risk with the assumption that the censoring distribution and the covariates are independent. Covariate‐dependent censoring sometimes occurs in medical studies. In this paper, we study the proportional hazards regression model for the subdistribution of a competing risk with proper adjustments for covariate‐dependent censoring. We consider a covariate‐adjusted weight function by fitting the Cox model for the censoring distribution and using the predictive probability for each individual. Our simulation study shows that the covariate‐adjusted weight estimator is basically unbiased when the censoring time depends on the covariates, and the covariate‐adjusted weight approach works well for the variance estimator as well. We illustrate our methods with bone marrow transplant data from the Center for International Blood and Marrow Transplant Research. Here, cancer relapse and death in complete remission are two competing risks.  相似文献   

17.
For the comparison of two groups of survival times subject to censoring the log-rank test is widely used. The log-rank test is known to be asymptotically fully efficient for the proportional hazards alternatives. But if the ratio of the hazards changes, the log-rank test may not detect the difference between the two groups. In this article a new test procedure is proposed. Simulation results show that the proposed test procedure provides good power against alternatives, where the hazard ratio between the two groups changes across 1.  相似文献   

18.
A class of test statistics is introduced which is sensitive against the alternative of stochastic ordering in the two-sample censored data problem. The test statistics for evaluating a cumulative weighted difference in survival distributions are developed while taking into account the imbalances in base-line covariates between two groups. This procedure can be used to test the null hypothesis of no treatment effect, especially when base-line hazards cross and prognostic covariates need to be adjusted. The statistics are semiparametric, not rank based, and can be written as integrated weighted differences in estimated survival functions, where these survival estimates are adjusted for covariate imbalances. The asymptotic distribution theory of the tests is developed, yielding test procedures that are shown to be consistent under a fixed alternative. The choice of weight function is discussed and relies on stability and interpretability considerations. An example taken from a clinical trial for acquired immune deficiency syndrome is presented.  相似文献   

19.
Conditional Studentized Survival Tests for Randomly Censored Models   总被引:1,自引:0,他引:1  
It is shown that in the case of heterogenous censoring distributions Studentized survival tests can be carried out as conditional permutation tests given the order statistics and their censoring status. The result is based on a conditional central limit theorem for permutation statistics. It holds for linear test statistics as well as for sup-statistics. The procedure works under one of the following general circumstances for the two-sample problem: the unbalanced sample size case, highly censored data, certain non-convergent weight functions or under alternatives. For instance, the two-sample log rank test can be carried out asymptotically as a conditional test if the relative amount of uncensored observations vanishes asymptotically as long as the number of uncensored observations becomes infinite. Similar results hold whenever the sample sizes and are unbalanced in the sense that and hold.  相似文献   

20.
Consider a randomized trial in which time to the occurrence of a particular disease, say pneumocystis pneumonia in an AIDS trial or breast cancer in a mammographic screening trial, is the failure time of primary interest. Suppose that time to disease is subject to informative censoring by the minimum of time to death, loss to and end of follow-up. In such a trial, the censoring time is observed for all study subjects, including failures. In the presence of informative censoring, it is not possible to consistently estimate the effect of treatment on time to disease without imposing additional non-identifiable assumptions. The goals of this paper are to specify two non-identifiable assumptions that allow one to test for and estimate an effect of treatment on time to disease in the presence of informative censoring. In a companion paper (Robins, 1995), we provide consistent and reasonably efficient semiparametric estimators for the treatment effect under these assumptions. In this paper we largely restrict attention to testing. We propose tests that, like standard weighted-log-rank tests, are asymptotically distribution-free -level tests under the null hypothesis of no causal effect of treatment on time to disease whenever the censoring and failure distributions are conditionally independent given treatment arm. However, our tests remain asymptotically distribution-free -level tests in the presence of informative censoring provided either of our assumptions are true. In contrast, a weighted log-rank test will be an -level test in the presence of informative censoring only if (1) one of our two non-identifiable assumptions hold, and (2) the distribution of time to censoring is the same in the two treatment arms. We also extend our methods to studies of the effect of a treatment on the evolution over time of the mean of a repeated measures outcome, such as CD-4 count.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号