首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Let (T1,T2) be gap times corresponding to two consecutive events, which are observed subject to (univariate) random right-censoring. The censoring variable corresponding to the second gap time T2 will in general depend on this gap time. Suppose the vector (T1,T2) satisfies the nonparametric location-scale regression model T2=m(T1)+σ(T1)?, where the functions m and σ are ‘smooth’, and ? is independent of T1. The aim of this paper is twofold. First, we propose a nonparametric estimator of the distribution of the error variable under this model. This problem differs from others considered in the recent related literature in that the censoring acts not only on the response but also on the covariate, having no obvious solution. On the basis of the idea of transfer of tail information (Van Keilegom and Akritas, 1999), we then use the proposed estimator of the error distribution to introduce nonparametric estimators for important targets such as: (a) the conditional distribution of T2 given T1; (b) the bivariate distribution of the gap times; and (c) the so-called transition probabilities. The asymptotic properties of these estimators are obtained. We also illustrate through simulations, that the new estimators based on the location-scale model may behave much better than existing ones.  相似文献   

6.
Abstract

The gap time between recurrent events is often of primary interest in many fields such as medical studies, and in this article, we discuss regression analysis of the gap times arising from a general class of additive transformation models. For the problem, we propose two estimation procedures, the modified within-cluster resampling (MWCR) method and the weighted risk-set (WRS) method, and the proposed estimators are shown to be consistent and asymptotically follow the normal distribution. In particular, the estimators have closed forms and can be easily determined, and the methods have the advantage of leaving the correlation among gap times arbitrary. A simulation study is conducted for assessing the finite sample performance of the presented methods and suggests that they work well in practical situations. Also the methods are applied to a set of real data from a chronic granulomatous disease (CGD) clinical trial.  相似文献   

7.
Zhuqing Yu 《Statistics》2017,51(2):277-293
It has been found, under a smooth function model setting, that the n out of n bootstrap is inconsistent at stationary points of the smooth function, but that the m out of n bootstrap is consistent, provided that a correct convergence rate is specified of the plug-in smooth function estimator. By considering a more general moving-parameter framework, we show that neither of the above bootstrap methods is consistent uniformly over neighbourhoods of stationary points, so that anomalies often arise of coverages of bootstrap sets over certain subsets of parameter values. We propose a recentred bootstrap procedure for constructing confidence sets with uniformly correct coverages over compact sets containing stationary points. A weighted bootstrap procedure is also proposed as an alternative under more general circumstances. Unlike the m out of n bootstrap, both procedures do not require knowledge of the convergence rate of the smooth function estimator. Empirical performance of our procedures is illustrated with numerical examples.  相似文献   

8.
The two parameter estimator proposed by Özkale and Kaç?ranlar [The restricted and unrestricted two parameter estimators. Comm Statist Theory Methods. 2007;36(15):2707–2725] is a general estimator which includes the ordinary least squares, the ridge and the Liu estimators as special cases. In the present paper we introduce Almon two parameter estimator based on the two parameter estimation procedure to deal with the problem of multicollinearity for the distiributed lag models. This estimator outperforms the Almon estimator according to the matrix mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters.  相似文献   

9.
In this article, we propose a general class of partially linear transformation models for recurrent gap time data, which extends the linear transformation models by incorporating non linear covariate effects and includes the partially linear proportional hazards and the partially linear proportional odds models as special cases. Both global and local estimating equations are developed to estimate the parametric and non parametric covariate effects, and the asymptotic properties of the resulting estimators are established. The finite-sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a clinic study on chronic granulomatous disease is provided.  相似文献   

10.
Due to rapid data growth, statistical analysis of massive datasets often has to be carried out in a distributed fashion, either because several datasets stored in separate physical locations are all relevant to a given problem, or simply to achieve faster (parallel) computation through a divide-and-conquer scheme. In both cases, the challenge is to obtain valid inference that does not require processing all data at a single central computing node. We show that for a very widely used class of spatial low-rank models, which can be written as a linear combination of spatial basis functions plus a fine-scale-variation component, parallel spatial inference and prediction for massive distributed data can be carried out exactly, meaning that the results are the same as for a traditional, non-distributed analysis. The communication cost of our distributed algorithms does not depend on the number of data points. After extending our results to the spatio-temporal case, we illustrate our methodology by carrying out distributed spatio-temporal particle filtering inference on total precipitable water measured by three different satellite sensor systems.  相似文献   

11.
The finite distributed lag models include highly correlated variables as well as lagged and unlagged values of the same variables. Some problems are faced for this model when applying the ordinary least squares (OLS) method or econometric models such as Almon and Koyck models. The primary aim of this study is to compare performances of alternative estimators to the OLS estimator defined by combining the Almon estimator with some estimators using Almon (1965) data. A simulation study with different model parameters is performed and the estimators are compared according to the root mean square error (RMSE) and prediction mean square error (PMSE).  相似文献   

12.
In an earlier paper we suggested a method for the identification and estimation of linear transfer function models. The method was claimed to be especially suitable for polynomial transfer function models. In this paper we shall consider the case of rational transfer function models (distributed lag models) in more detail. A simple method for the estimation of the parameters of multiple input rational distributed lag models is suggested. The method is based on simple linear identities that the parameters always fulfill. The asymptotic distribution of the proposed estimator is derived. Two illustrative examples of the use of the new method are given.  相似文献   

13.
The authors show how saddlepoint techniques lead to highly accurate approximations for Bayesian predictive densities and cumulative distribution functions in stochastic model settings where the prior is tractable, but not necessarily the likelihood or the predictand distribution. They consider more specifically models involving predictions associated with waiting times for semi‐Markov processes whose distributions are indexed by an unknown parameter θ. Bayesian prediction for such processes when they are not stationary is also addressed and the inverse‐Gaussian based saddlepoint approximation of Wood, Booth & Butler (1993) is shown to accurately deal with the nonstationarity whereas the normal‐based Lugannani & Rice (1980) approximation cannot, Their methods are illustrated by predicting various waiting times associated with M/M/q and M/G/1 queues. They also discuss modifications to the matrix renewal theory needed for computing the moment generating functions that are used in the saddlepoint methods.  相似文献   

14.
Life test sampling plans (LSPs) for the Weibull distribution are usually developed under the assumptions that the shape parameter is known and the life test is conducted at an accelerated condition for which the acceleration factor (AF) is known. However, the sensitivities of a plan to the assumed shape parameter and AF have been rarely investigated. This paper considers the case where the life test is hybrid censored and develops attributes LSPs under the above assumptions. Then, sensitivity analyses are conducted to assess the effects of the uncertainties in the assumed AF and shape parameter on the actual producer and consumer risks. A method is also developed for constructing LSPs that can accommodate these uncertainties.  相似文献   

15.
Necessary and sufficient existence conditions are derived for the uniformly minimum risk unbiased estimators of the parameters in extended growth curve models with the general covariance matrix or the uniform covariance structure or the serial covariance structure under convex losses and matrix losses, respectively.  相似文献   

16.
Fitting stochastic kinetic models represented by Markov jump processes within the Bayesian paradigm is complicated by the intractability of the observed-data likelihood. There has therefore been considerable attention given to the design of pseudo-marginal Markov chain Monte Carlo algorithms for such models. However, these methods are typically computationally intensive, often require careful tuning and must be restarted from scratch upon receipt of new observations. Sequential Monte Carlo (SMC) methods on the other hand aim to efficiently reuse posterior samples at each time point. Despite their appeal, applying SMC schemes in scenarios with both dynamic states and static parameters is made difficult by the problem of particle degeneracy. A principled approach for overcoming this problem is to move each parameter particle through a Metropolis-Hastings kernel that leaves the target invariant. This rejuvenation step is key to a recently proposed \(\hbox {SMC}^2\) algorithm, which can be seen as the pseudo-marginal analogue of an idealised scheme known as iterated batch importance sampling. Computing the parameter weights in \(\hbox {SMC}^2\) requires running a particle filter over dynamic states to unbiasedly estimate the intractable observed-data likelihood up to the current time point. In this paper, we propose to use an auxiliary particle filter inside the \(\hbox {SMC}^2\) scheme. Our method uses two recently proposed constructs for sampling conditioned jump processes, and we find that the resulting inference schemes typically require fewer state particles than when using a simple bootstrap filter. Using two applications, we compare the performance of the proposed approach with various competing methods, including two global MCMC schemes.  相似文献   

17.
The development of models and methods for cure rate estimation has recently burgeoned into an important subfield of survival analysis. Much of the literature focuses on the standard mixture model. Recently, process-based models have been suggested. We focus on several models based on first passage times for Wiener processes. Whitmore and others have studied these models in a variety of contexts. Lee and Whitmore (Stat Sci 21(4):501–513, 2006) give a comprehensive review of a variety of first hitting time models and briefly discuss their potential as cure rate models. In this paper, we study the Wiener process with negative drift as a possible cure rate model but the resulting defective inverse Gaussian model is found to provide a poor fit in some cases. Several possible modifications are then suggested, which improve the defective inverse Gaussian. These modifications include: the inverse Gaussian cure rate mixture model; a mixture of two inverse Gaussian models; incorporation of heterogeneity in the drift parameter; and the addition of a second absorbing barrier to the Wiener process, representing an immunity threshold. This class of process-based models is a useful alternative to the standard model and provides an improved fit compared to the standard model when applied to many of the datasets that we have studied. Implementation of this class of models is facilitated using expectation-maximization (EM) algorithms and variants thereof, including the gradient EM algorithm. Parameter estimates for each of these EM algorithms are given and the proposed models are applied to both real and simulated data, where they perform well.  相似文献   

18.
Dynamic regression models are widely used because they express and model the behaviour of a system over time. In this article, two dynamic regression models, the distributed lag (DL) model and the autoregressive distributed lag model, are evaluated focusing on their lag lengths. From a classical statistics point of view, there are various methods to determine the number of lags, but none of them are the best in all situations. This is a serious issue since wrong choices will provide bad estimates for the effects of the regressors on the response variable. We present an alternative for the aforementioned problems by considering a Bayesian approach. The posterior distributions of the numbers of lags are derived under an improper prior for the model parameters. The fractional Bayes factor technique [A. O'Hagan, Fractional Bayes factors for model comparison (with discussion), J. R. Statist. Soc. B 57 (1995), pp. 99–138] is used to handle the indeterminacy in the likelihood function caused by the improper prior. The zero-one loss function is used to penalize wrong decisions. A naive method using the specified maximum number of DLs is also presented. The proposed and the naive methods are verified using simulation data. The results are promising for the method we proposed. An illustrative example with a real data set is provided.  相似文献   

19.
For the problem of individual prediction in linear regression models, that is, estimation of a linear combination of regression coefficients, mean square error behavior of a general class of adaptive predictors is examined.  相似文献   

20.
There are situations in the analysis of failure time or lifetime data where the censoring times of unfailed units are missing. The non-parametric estimator of the lifetime distribution for such data is available in literature. In this paper we consider an extension of this situation to the univariate and bivariate competing risk setups. The maximum likelihood and simple moment estimators of cause specific distribution functions in both univariate and bivariate situations are developed. A simulation study is carried out to assess the performance of the estimators. Finally, we illustrate the method with real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号