首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada  相似文献   

2.
Small area estimation has received considerable attention in recent years because of growing demand for small area statistics. Basic area‐level and unit‐level models have been studied in the literature to obtain empirical best linear unbiased prediction (EBLUP) estimators of small area means. Although this classical method is useful for estimating the small area means efficiently under normality assumptions, it can be highly influenced by the presence of outliers in the data. In this article, the authors investigate the robustness properties of the classical estimators and propose a resistant method for small area estimation, which is useful for downweighting any influential observations in the data when estimating the model parameters. To estimate the mean squared errors of the robust estimators of small area means, a parametric bootstrap method is adopted here, which is applicable to models with block diagonal covariance structures. Simulations are carried out to study the behaviour of the proposed robust estimators in the presence of outliers, and these estimators are also compared to the EBLUP estimators. Performance of the bootstrap mean squared error estimator is also investigated in the simulation study. The proposed robust method is also applied to some real data to estimate crop areas for counties in Iowa, using farm‐interview data on crop areas and LANDSAT satellite data as auxiliary information. The Canadian Journal of Statistics 37: 381–399; 2009 © 2009 Statistical Society of Canada  相似文献   

3.
Unit-level regression models are commonly used in small area estimation (SAE) to obtain an empirical best linear unbiased prediction of small area characteristics. The underlying assumptions of these models, however, may be unrealistic in some applications. Previous work developed a copula-based SAE model where the empirical Kendall's tau was used to estimate the dependence between two units from the same area. In this article, we propose a likelihood framework to estimate the intra-class dependence of the multivariate exchangeable copula for the empirical best unbiased prediction (EBUP) of small area means. One appeal of the proposed approach lies in its accommodation of both parametric and semi-parametric estimation approaches. Under each estimation method, we further propose a bootstrap approach to obtain a nearly unbiased estimator of the mean squared prediction error of the EBUP of small area means. The performance of the proposed methods is evaluated through simulation studies and also by a real data application.  相似文献   

4.
5.
Small area estimators are often based on linear mixed models under the assumption that relationships among variables are stationary across the area of interest (Fay–Herriot models). This hypothesis is patently violated when the population is divided into heterogeneous latent subgroups. In this paper we propose a local Fay–Herriot model assisted by a Simulated Annealing algorithm to identify the latent subgroups of small areas. The value minimized through the Simulated Annealing algorithm is the sum of the estimated mean squared error (MSE) of the small area estimates. The technique is employed for small area estimates of erosion on agricultural land within the Rathbun Lake Watershed (IA, USA). The results are promising and show that introducing local stationarity in a small area model may lead to useful improvements in the performance of the estimators.  相似文献   

6.
7.
Bayesian methods have been extensively used in small area estimation. A linear model incorporating autocorrelated random effects and sampling errors was previously proposed in small area estimation using both cross-sectional and time-series data in the Bayesian paradigm. There are, however, many situations that we have time-related counts or proportions in small area estimation; for example, monthly dataset on the number of incidence in small areas. This article considers hierarchical Bayes generalized linear models for a unified analysis of both discrete and continuous data with incorporating cross-sectional and time-series data. The performance of the proposed approach is evaluated through several simulation studies and also by a real dataset.  相似文献   

8.
A nested-error regression model having both fixed and random effects is introduced to estimate linear parameters of small areas. The model is applicable to data having a proportion of domains where the variable of interest cannot be described by a standard linear mixed model. Algorithms and formulas to fit the model, to calculate EBLUP and to estimate mean-squared errors are given. A Monte Carlo simulation experiment is presented to illustrate the gain of precision obtained by using the proposed model and to obtain some practical conclusions. A motivating application to Spanish Labour Force Survey data is also given.  相似文献   

9.
For estimation of population totals, dual system estimation (d.s.e.) is often used. Such a procedure is known to suffer from bias under certain conditions. In the following, a simple model is proposed that combines three conditions under which bias of the DSE can result. The conditions relate to response correlation, classification and matching error. The resulting bias is termed model bias. The effects of model bias and synthetic bias in a small area estimation application are illustrated. The illustration uses simulated population data  相似文献   

10.
Sample surveys are usually designed and analysed to produce estimates for larger areas. Nevertheless, sample sizes are often not large enough to give adequate precision for small area estimates of interest. To overcome such difficulties, borrowing strength from related small areas via modelling becomes essential. In line with this, we propose components of variance models with power transformations for small area estimation. This paper reports the results of a study aimed at incorporating the power transformation in small area estimation for improving the quality of small area predictions. The proposed methods are demonstrated on satellite data in conjunction with survey data to estimate mean acreage under a specified crop for counties in Iowa.  相似文献   

11.
The term ‘small area’ or ‘small domain’ is commonly used to denote a small geographical area that has a small subpopulation of people within a large area. Small area estimation is an important area in survey sampling because of the growing demand for better statistical inference for small areas in public or private surveys. In small area estimation problems the focus is on how to borrow strength across areas in order to develop a reliable estimator and which makes use of available auxiliary information. Some traditional methods for small area problems such as empirical best linear unbiased prediction borrow strength through linear models that provide links to related areas, which may not be appropriate for some survey data. In this article, we propose a stepwise Bayes approach which borrows strength through an objective posterior distribution. This approach results in a generalized constrained Dirichlet posterior estimator when auxiliary information is available for small areas. The objective posterior distribution is based only on the assumption of exchangeability across related areas and does not make any explicit model assumptions. The form of our posterior distribution allows us to assign a weight to each member of the sample. These weights can then be used in a straight forward fashion to make inferences about the small area means. Theoretically, the stepwise Bayes character of the posterior allows one to prove the admissibility of the point estimators suggesting that inferential procedures based on this approach will tend to have good frequentist properties. Numerically, we demonstrate in simulations that the proposed stepwise Bayes approach can have substantial strengths compared to traditional methods.  相似文献   

12.
Multivariate shrinkage estimation of small area means and proportions   总被引:3,自引:0,他引:3  
The familiar (univariate) shrinkage estimator of a small area mean or proportion combines information from the small area and a national survey. We define a multivariate shrinkage estimator which combines information also across subpopulations and outcome variables. The superiority of the multivariate shrinkage over univariate shrinkage, and of the univariate shrinkage over the unbiased (sample) means, is illustrated on examples of estimating the local area rates of economic activity in the subpopulations defined by ethnicity, age and sex. The examples use the sample of anonymized records of individuals from the 1991 UK census. The method requires no distributional assumptions but relies on the appropriateness of the quadratic loss function. The implementation of the method involves minimum outlay of computing. Multivariate shrinkage is particularly effective when the area level means are highly correlated and the sample means of one or a few components have small sampling and between-area variances. Estimations for subpopulations based on small samples can be greatly improved by incorporating information from subpopulations with larger sample sizes.  相似文献   

13.
14.
15.
This paper compares the tail-heaviness of certain random quotients in terms of the asymptotic relative efficiences of the sample median to a large class of estimators containing the mean, trimmed mean and Huber's M-estimator. The random quotients are generalizations of the "Normalllndependent" distributions and include the Student's t, contaminated normal, double exponential and slash distributions.  相似文献   

16.
Summary.  We apply multivariate shrinkage to estimate local area rates of unemployment and economic inactivity by using UK Labour Force Survey data. The method exploits the similarity of the rates of claiming unemployment benefit and the unemployment rates as defined by the International Labour Organisation. This is done without any distributional assumptions, merely relying on the high correlation of the two rates. The estimation is integrated with a multiple-imputation procedure for missing employment status of subjects in the database (item non-response). The hot deck method that is used in the imputations is adapted to reflect the uncertainty in the model for non-response. The method is motivated as a development (improvement) of the current operational procedure in which the imputed value is a non-stochastic function of the data. An extension of the procedure to subjects who are absent from the database (unit non-response) is proposed.  相似文献   

17.
In this study, we consider the problem of selecting explanatory variables of fixed effects in linear mixed models under covariate shift, which is when the values of covariates in the model for prediction differ from those in the model for observed data. We construct a variable selection criterion based on the conditional Akaike information introduced by Vaida & Blanchard (2005). We focus especially on covariate shift in small area estimation and demonstrate the usefulness of the proposed criterion. In addition, numerical performance is investigated through simulations, one of which is a design‐based simulation using a real dataset of land prices. The Canadian Journal of Statistics 46: 316–335; 2018 © 2018 Statistical Society of Canada  相似文献   

18.
19.
Abstract

This paper compares three estimators for periodic autoregressive (PAR) models. The first is the classical periodic Yule-Walker estimator (YWE). The second is a robust version of YWE (RYWE) which uses the robust autocovariance function in the periodic Yule-Walker equations, and the third is the robust least squares estimator (RLSE) based on iterative least squares with robust versions of the original time series. The daily mean particulate matter concentration (PM10) data is used to illustrate the methodologies in a real application, that is, in the Air Quality area.  相似文献   

20.
Small area estimation plays a prominent role in survey sampling due to a growing demand for reliable small area estimates from both public and private sectors. Popularity of model-based inference is increasing in survey sampling, particularly, in small area estimation. The estimates of the small area parameters can profitably ‘borrow strength’ from data on related multiple characteristics and/or auxiliary variables from other neighboring areas through appropriate models. Fay (1987, Small Area Statistics, Wiley, New York, pp. 91–102) proposed multivariate regression for small area estimation of multiple characteristics. The success of this modeling rests essentially on the strength of correlation of these dependent variables. To estimate small area mean vectors of multiple characteristics, multivariate modeling has been proposed in the literature via a multivariate variance components model. We use this approach to empirical best linear unbiased and empirical Bayes prediction of small area mean vectors. We use data from Battese et al. (1988, J. Amer. Statist. Assoc. 83, 28 –36) to conduct a simulation which shows that the multivariate approach may achieve substantial improvement over the usual univariate approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号