首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce and study general mathematical properties of a new generator of continuous distributions with three extra parameters called the new generalized odd log-logistic family of distributions. The proposed family contains several important classes discussed in the literature as submodels such as the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, entropy measures, and order statistics, which hold for any baseline model, are presented. We also present certain characterization of the proposed distribution and derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behavior of the maximum likelihood estimator via simulation. The importance of the new family is illustrated by means of two real data sets. These applications indicate that the new family can provide better fits than other well-known classes of distributions. The beauty and importance of the new family lies in its ability to model real data.  相似文献   

2.
We introduce a new class of continuous distributions named the Topp–Leone odd log-logistic family, which extends the one-parameter distribution pioneered by Topp and Leone [A family of J-shaped frequency functions. J Amer Statist Assoc. 1955;50:209–219]. We study some of its mathematical properties and describe two special cases. Further, we propose a regression model based on the new Topp–Leone odd log-logistic Weibull distribution. The usefulness and flexibility of the proposed family are illustrated by means of three real data sets.  相似文献   

3.
ABSTRACT

The log-logistic distribution is commonly used to model lifetime data. We propose a wider distribution, named the exponentiated log-logistic geometric distribution, based on a double activation approach. We obtain the quantile function, ordinary moments, and generating function. The method of maximum likelihood is used to estimate the model parameters. We propose a new extended regression model based on the logarithm of the exponentiated log-logistic geometric distribution. This regression model can be very useful in the analysis of real data and could provide better fits than other special regression models. The potentiality of the new models is illustrated by means of two applications to real lifetime data sets.  相似文献   

4.
We introduce and study general mathematical properties of a new generator of continuous distributions with one extra parameter called the generalized odd half-Cauchy family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear mixture of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. We discuss the estimation of the model parameters by maximum likelihood and prove empirically the flexibility of the new family by means of two real data sets.  相似文献   

5.
In applications of survival analysis, the failure rate function may frequently present a unimodal shape. In such cases, the log-normal and log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the odd log-logistic Weibull distribution is proposed for modelling data with a decreasing, increasing, unimodal and bathtub failure rate function as an alternative to the log-Weibull regression model. For censored data, we consider a classic method to estimate the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals is determined and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the new regression model applied to censored data. We analyse a real data set using the log-odd log-logistic Weibull regression model.  相似文献   

6.
We study general mathematical properties of a new class of continuous distributions with an extra positive parameter called the type I half-logistic family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics are determined. We introduce a bivariate extension of the new family. We discuss the estimation of the model parameters by maximum likelihood and illustrate its potentiality by means of two applications to real data.  相似文献   

7.
We propose a new class of distributions called the exponentiated G geometric family motivated mainly by lifetime issues which can generate several lifetime models discussed in the literature. Some mathematical properties of the new family including asymptotes and shapes, moments, quantile and generating functions, extreme values and order statistics are fully investigated. We propose the log-exponentiated Weibull geometric and log-exponentiated log-logistic geometric regression models to cope with censored data. The model parameters are estimated by maximum likelihood. Three examples with real data expose quite well the new family.  相似文献   

8.
We study some mathematical properties of a new generator of continuous distributions with one extra parameter called the odd power Cauchy family including asymptotics, linear representation, moments, quantile and generating functions, entropies, order statistics and extreme values. We introduce two bivariate extensions of the new family. The maximum likelihood method is discussed to estimate the model parameters by means of a Monte Carlo simulation study. We define a new log-odd power Cauchy–Weibull regression model. The usefulness of the proposed models is proved empirically by means of three real data sets.  相似文献   

9.
We define two new lifetime models called the odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with various hazard rate shapes such as increasing, decreasing, upside-down bathtub, and bathtub. Various structural properties are derived. Certain characterizations of OLL-L distribution are presented. The maximum likelihood estimators of the unknown parameters are obtained. We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a Poisson distribution and the time to event has an OLL-L distribution. The applicability of the new models is illustrated by means real datasets.  相似文献   

10.
A new class of distributions called the log-logistic Weibull–Poisson distribution is introduced and its properties are explored. This new distribution represents a more flexible model for lifetime data. Some statistical properties of the proposed distribution including the expansion of the density function, quantile function, hazard and reverse hazard functions, moments, conditional moments, moment generating function, skewness and kurtosis are presented. Mean deviations, Bonferroni and Lorenz curves, Rényi entropy and distribution of the order statistics are derived. Maximum likelihood estimation technique is used to estimate the model parameters. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators and width of the confidence interval for each parameter and finally applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.  相似文献   

11.
We define the odd log-logistic exponential Gaussian regression with two systematic components, which extends the heteroscedastic Gaussian regression and it is suitable for bimodal data quite common in the agriculture area. We estimate the parameters by the method of maximum likelihood. Some simulations indicate that the maximum-likelihood estimators are accurate. The model assumptions are checked through case deletion and quantile residuals. The usefulness of the new regression model is illustrated by means of three real data sets in different areas of agriculture, where the data present bimodality.  相似文献   

12.
We study a new family of continuous distributions with two extra shape parameters called the Burr generalized family of distributions. We investigate the shapes of the density and hazard rate function. We derive explicit expressions for some of its mathematical quantities. The estimation of the model parameters is performed by maximum likelihood. We prove the flexibility of the new family by means of applications to two real data sets. Furthermore, we propose a new extended regression model based on the logarithm of the Burr generalized distribution. This model can be very useful to the analysis of real data and provide more realistic fits than other special regression models.  相似文献   

13.
The modeling and analysis of experiments is an important aspect of statistical work in a wide variety of scientific and technological fields. We introduce and study the odd log-logistic skew-normal model, which can be interpreted as a generalization of the skew-normal distribution. The new distribution can be used effectively in the analysis of experiments data since it accommodates unimodal, bimodal, symmetric, bimodal and right-skewed, and bimodal and left-skewed density function depending on the parameter values. We illustrate the importance of the new model by means of three real data sets in analysis of experiments.  相似文献   

14.
ABSTRACT

The logistic distribution has a prominent role in the theory and practice of statistics. We introduce a new family of continuous distributions generated from a logistic random variable called the logistic-X family. Its density function can be symmetrical, left-skewed, right-skewed, and reversed-J shaped, and can have increasing, decreasing, bathtub, and upside-down bathtub hazard rates shaped. Further, it can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon entropy, and order statistics. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. We also investigate the properties of one special model, the logistic-Fréchet distribution, and illustrate its importance by means of two applications to real data sets.  相似文献   

15.
ABSTRACT

For any continuous baseline G distribution, Cordeiro and Castro pioneered the Kumaraswamy-G family of distributions with two extra positive parameters, which generalizes both Lehmann types I and II classes. We study some mathematical properties of the Kumaraswamy-normal (KwN) distribution including ordinary and incomplete moments, mean deviations, quantile and generating functions, probability weighted moments, and two entropy measures. We propose a new linear regression model based on the KwN distribution, which extends the normal linear regression model. We obtain the maximum likelihood estimates of the model parameters and provide some diagnostic measures such as global influence, local influence, and residuals. We illustrate the potentiality of the introduced models by means of two applications to real datasets.  相似文献   

16.
We propose a new three-parameter continuous model called the McDonald arcsine distribution, which is a very competitive model to the beta, beta type I and Kumaraswamy distributions for modelling rates and proportions. We provide a mathematical treatment of the new distribution including explicit expressions for the density function, moments, generating and quantile functions, mean deviations, two probability measures based on the Bonferroni and Lorenz curves, Shannon entropy, Rényi entropy and cumulative residual entropy. Maximum likelihood is used to estimate the model parameters and the expected information matrix is determined. An application of the proposed model to real data shows that it can give consistently a better fit than other important statistical models.  相似文献   

17.
In this article, a new three-parameter extension of the two-parameter log-logistic distribution is introduced. Several distributional properties such as moment-generating function, quantile function, mean residual lifetime, the Renyi and Shanon entropies, and order statistics are considered. The estimation of the model parameters for complete and right-censored cases is investigated competently by maximum likelihood estimation (MLE). A simulation study is conducted to show that these MLEs are consistent in moderate samples. Two real datasets are considered; one is a right-censored data to show that the proposed model has a superior performance over several existing popular models.  相似文献   

18.
The Weibull, log-logistic and log-normal distributions are extensively used to model time-to-event data. The Weibull family accommodates only monotone hazard rates, whereas the log-logistic and log-normal are widely used to model unimodal hazard functions. The increasing availability of lifetime data with a wide range of characteristics motivate us to develop more flexible models that accommodate both monotone and nonmonotone hazard functions. One such model is the exponentiated Weibull distribution which not only accommodates monotone hazard functions but also allows for unimodal and bathtub shape hazard rates. This distribution has demonstrated considerable potential in univariate analysis of time-to-event data. However, the primary focus of many studies is rather on understanding the relationship between the time to the occurrence of an event and one or more covariates. This leads to a consideration of regression models that can be formulated in different ways in survival analysis. One such strategy involves formulating models for the accelerated failure time family of distributions. The most commonly used distributions serving this purpose are the Weibull, log-logistic and log-normal distributions. In this study, we show that the exponentiated Weibull distribution is closed under the accelerated failure time family. We then formulate a regression model based on the exponentiated Weibull distribution, and develop large sample theory for statistical inference. We also describe a Bayesian approach for inference. Two comparative studies based on real and simulated data sets reveal that the exponentiated Weibull regression can be valuable in adequately describing different types of time-to-event data.  相似文献   

19.
We study a new family of distributions defined by the minimum of the Poisson random number of independent identically distributed random variables having a general exponentiated G distribution. Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics and their moments, reliability, and Shannon entropy are derived. Maximum likelihood estimation of the model parameters is investigated. Two special models of the new family are discussed. We perform an application to a real data set to show the potentiality of the proposed family.  相似文献   

20.
A five-parameter extended fatigue life model called the McDonald–Birnbaum–Saunders (McBS) distribution is proposed. It extends the Birnbaum–Saunders and beta Birnbaum–Saunders [G.M. Cordeiro and A.J. Lemonte, The β-Birnbaum–Saunders distribution: An improved distribution for fatigue life modeling. Comput. Statist. Data Anal. 55 (2011), pp. 1445–1461] distributions and also the new Kumaraswamy–Birnbaum–Saunders distribution. We obtain the ordinary moments, generating function, mean deviations and quantile function. The method of maximum likelihood is used to estimate the model parameters and its potentiality is illustrated with an application to a real fatigue data set. Further, we propose a new extended regression model based on the logarithm of the McBS distribution. This model can be very useful to the analysis of real data and could give more realistic fits than other special regression models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号