首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

A bivariate integer-valued autoregressive time series model is presented. The model structure is based on binomial thinning. The unconditional and conditional first and second moments are considered. Correlation structure of marginal processes is shown to be analogous to the ARMA(2, 1) model. Some estimation methods such as the Yule–Walker and conditional least squares are considered and the asymptotic distributions of the obtained estimators are derived. Comparison between bivariate model with binomial thinning and bivariate model with negative binomial thinning is given.  相似文献   

2.
A new stationary first-order integer-valued autoregressive process with geometric marginal distributions is introduced based on negative binomial thinning. Some properties of the process are established. Estimators of the parameters of the process are obtained using the methods of conditional least squares, Yule–Walker and maximum likelihood. Also, the asymptotic properties of the estimators are derived involving their distributions. Some numerical results of the estimators are presented with a discussion to the obtained results. Real data are used and a possible application is discussed.  相似文献   

3.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

4.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules.  相似文献   

5.
The CUSUM chart is good enough to detect small-to-moderate shifts in the process parameter(s) as it can be optimally designed to detect a particular shift size. The adaptive CUSUM (ACUSUM) chart provides good detection over a range of shift sizes because of its ability to update the reference parameter using the estimated process shift. In this paper, we propose auxiliary-information-based (AIB) optimal CUSUM (OCUSUM) and ACUSUM charts, named AIB-OCUSUM and AIB-ACUSUM charts, using a difference estimator of the process mean. The performance comparisons between existing and proposed charts are made in terms of the average run length (ARL), extra quadratic loss and integral relative ARL measures. It is found that the AIB-OCUSUM and AIB-ACUSUM charts are more sensitive than the AIB-CUSUM and ACUSUM charts, respectively. Moreover, the AIB-ACUSUM chart surpasses the AIB-OCUSUM chart when detecting a range of mean shift sizes. Illustrative examples are given to support the theory.  相似文献   

6.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

7.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

8.
To help in the detection of variance increases and decreases, three modified versions of traditional Shewhart S-charts are evaluated in terms of their average run length values. One scheme uses control limits based on equal tail chi-square distribution probabilities. The second uses control limits based on unequal tail probabilities. The third uses warning limits based on equal tail probabilities, but requires two successive points beyond the warning limit to give an out-of-control signal. They all result in better average run length values than the traditional S-chart. Also, if the only concern is the detection of variance increases, then both S-charts and warning limit charts without lower control limits are shown to have better average run length values than those of the traditional charts.  相似文献   

9.
Properties of the Shewhart X-chart for controlling the mean of a process with a normal distribution are investigated for the situation where the process variance Ó2must be estimated from initial sample data. The control limits of the X-chart depend on the estimate of Ó2and thus, unlike the case when Ó2is known, the X-chart is not equivalent to a sequence of independent tests. When Ó2is estimated the distribution of the run length is not geometric and cannot be characterized simply in terms of the probability of a signal at a given point. The average run length (ARL) for the X-chart is expressed in terms of an integral involving the normal cdf, and it is shown that the chart signals with

probability one, but the ARL may not be finite if the size of the 2 sample used to estimate Ó2is sufficiently small. In addition, certain bounds for the ARL are also derived. Numerical integration is use to show that the effect of using small sample sizes in estimating Ó2is to increase the ARL and the variance of the run length distribution  相似文献   

10.
This study examines the statistical process control chart used to detect a parameter shift with Poisson integer-valued GARCH (INGARCH) models and zero-inflated Poisson INGARCH models. INGARCH models have a conditional mean structure similar to GARCH models and are well known to be appropriate to analyzing count data that feature overdispersion. Special attention is paid in this study to conditional and general likelihood ratio-based (CLR and GLR) CUSUM charts and the score function-based CUSUM (SFCUSUM) chart. The performance of each of the proposed methods is evaluated through a simulation study, by calculating their average run length. Our findings show that the proposed methods perform adequately, and that the CLR chart outperforms the GLR chart when there is an increased shift of parameters. Moreover, the use of the SFCUSUM chart in particular is found to lead to a lower false alarm rate than the use of the CLR chart.  相似文献   

11.
In this article, we introduce a new multivariate cumulative sum chart, where the target mean shift is assumed to be a weighted sum of principal directions of the population covariance matrix. This chart provides an attractive performance in terms of average run length (ARL) for large-dimensional data and it also compares favorably to existing multivariate charts including Crosier's benchmark chart with updated values of the upper control limit and the associated ARL function. In addition, Monte Carlo simulations are conducted to assess the accuracy of the well-known Siegmund's approximation of the average ARL function when observations are normal distributed. As a byproduct of the article, we provide updated values of upper control limits and the associated ARL function for Crosier's multivariate CUSUM chart.  相似文献   

12.
The memory-type adaptive and non-adaptive control charts are among the best control charts for detecting small-to-moderate changes in the process parameter(s). In this paper, we propose the Crosier CUSUM (CCUSUM), EWMA, adaptive CCUSUM (ACCUSUM) and adaptive EWMA (AEWMA) charts for efficiently monitoring the changes in the covariance matrix of a multivariate normal process without subgrouping. Using extensive Monte Carlo simulations, the length characteristics of these control charts are computed. It turns out that the ACCUSUM and AEWMA charts perform uniformly and substantially better than the CCUSUM and EWMA charts when detecting a range of shift sizes in the covariance matrix. Moreover, the AEWMA chart outperforms the ACCUSUM chart. A real dataset is used to explain the implementation of the proposed control charts.  相似文献   

13.
Many multivariate quality control techniques are used for multivariate variable processes, but few work for multivariate attribute processes. To monitor multivariate attributes, controlling the false alarms (type I errors) and considering the correlation between attributes are two important issues. By taking into account these two issues, a new control chart is presented to monitor a bivariate binomial process. An example is illustrated for the proposed method. To evaluate the performance of the proposed method, a simulation study is conducted to compare the results with those using both the multivariate np chart and skewness reduction approaches. The results show that the correlation is taken into account in the designed chart and the overall false alarm is controlled at the nominal value. Moreover, the process shift can be quickly detected and the variable that is responsible for a signal can be determined.  相似文献   

14.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules.

A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control.  相似文献   

15.
The np control chart is used widely in Statistical Process Control (SPC) for attributes. It is difficult to design an np chart that simultaneously satisfies a requirement on false alarm rate and has high detection effectiveness. This is mainly because one is often unable to make the in-control Average Run Length ARL0 of an np chart close to a specified or desired value. This article proposes a new np control chart which is able to overcome the problems suffered by the conventional np chart. It is called the Double Inspection (DI) np chart, because it uses a double inspection scheme to decide the process status (in control or out of control). The first inspection decides the process status according to the number of non-conforming units found in a sample; and the second inspection makes a decision based on the location of a particular non-conforming unit in the sample. The double inspection scheme makes the in-control ARL0 very close to a specified value and the out-of-control Average Run Length ARL1 quite small. As a result, the requirement on a false alarm rate is satisfied and the detection effectiveness also achieves a high level. Moreover, the DI np chart retains the operational simplicity of the np chart to a large degree and achieves the performance improvement without requiring extra inspection (testing whether a unit is conforming or not).  相似文献   

16.
In this paper, a new single exponentially weighted moving average (EWMA) control chart based on the weighted likelihood ratio test, referred to as the WLRT chart, is proposed for the problem of monitoring the mean and variance of a normally distributed process variable. It is easy to design, fast to compute, and quite effective for diverse cases including the detection of the decrease in variability and individual observation case. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the average run length (ARL) and the sample size are provided. The in-control (IC) and out-of-control (OC) performance properties of the new chart are compared with some other existing EWMA-type charts. Our simulation results show that the IC run length distribution of the proposed chart is similar to that of a geometric distribution, and it provides quite a robust and satisfactory overall performance for detecting a wide range of shifts in the process mean and/or variability.  相似文献   

17.
Applications: CUSUM Charts for AR1 Data: are they worth the Effort?   总被引:1,自引:0,他引:1  
The conventional one-sided CUSUM procedure is extended for controlling autocorrelated data which are approximately AR1. The performances of these procedures are compared using simulation studies and the average run length as a criterion. Also these procedures are compared to two versions of Shewhart individual charts. Two applications are considered.  相似文献   

18.
A statistical quality control chart is an important tool of the statistical process control, which is widely used to control and monitor a production process. The CUSUM chart is designed to detect a specific shift, provided that the shift size is known in advance. In practice, however, shift sizes are rarely known. It is then customary to use an adaptive CUSUM chart, which can effectively detect a range of shift sizes. In this paper, we enhance the sensitivities of the improved adaptive CUSUM mean charts using an auxiliary-information-based (AIB) mean estimator. The run length performances of the proposed charts are compared with those of the AIB adaptive and non-adaptive CUSUM charts in terms of the average run length (ARL), extra quadratic loss, and integral relative ARL. These run length comparisons reveal that the proposed charts are more sensitive than the existing charts when detecting different kinds of shift in the process mean. An example is given to demonstrate the implementation of existing and proposed charts.  相似文献   

19.
The idea of using non-constant sampling intervals has been of interest in quality control applications since it was first suggested for the “skip-lot sampling plan” of Dodge. Recent interest has focused on the use of variable sampling interval (VSI) control schemes. VSI control schemes use a short sampling interval is given  相似文献   

20.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号