首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The case of nonresponse in multivariate stratified sampling survey was first introduced by Hansen and Hurwitz in 1946 considering the sampling variances and costs to be deterministic. However, in real life situations sampling variance and cost are often random (stochastic) and have probability distributions. In this article, we have formulated the multivariate stratified sampling in the presence of nonresponse with random sampling variances and costs as a multiobjective stochastic programming problem. Here, the sampling variance and costs are considered random and converted into a deterministic NLPP by using chance constraint and modified E-model. A solution procedure using three different approaches are adopted viz. goal programming, fuzzy programming, and D1 distance method to obtain the compromise allocation for the formulated problem. An empirical study has also been provided to illustrate the computational details.  相似文献   

2.
Numerous optimization problems arise in survey designs. The problem of obtaining an optimal (or near optimal) sampling design can be formulated and solved as a mathematical programming problem. In multivariate stratified sample surveys usually it is not possible to use the individual optimum allocations for sample sizes to various strata for one reason or another. In such situations some criterion is needed to work out an allocation which is optimum for all characteristics in some sense. Such an allocation may be called an optimum compromise allocation. This paper examines the problem of determining an optimum compromise allocation in multivariate stratified random sampling, when the population means of several characteristics are to be estimated. Formulating the problem of allocation as an all integer nonlinear programming problem, the paper develops a solution procedure using a dynamic programming technique. The compromise allocation discussed is optimal in the sense that it minimizes a weighted sum of the sampling variances of the estimates of the population means of various characteristics under study. A numerical example illustrates the solution procedure and shows how it compares with Cochran's average allocation and proportional allocation.  相似文献   

3.
In many real life situations the linear cost function does not approximate the actual cost incurred adequately. The cost of traveling between the units selected in the sample within a stratum is significant, instead of linear cost function. In this paper, we have considered the problem of finding a compromise allocation for a multivariate stratified sample survey with a significant travel cost within strata is formulated as a problem of non-linear stochastic programming with multiple objective functions. The compromise solutions are obtained through Chebyshev approximation technique, D 1- distance and goal programming. A numerical example is presented to illustrate the computational details of the proposed methods.  相似文献   

4.
In multivariate stratified sample survey with L strata, let p-characteristics are defined on each unit of the population. To estimate the unknown p-population means of each characteristic, a random sample is taken out from the population. In multivariate stratified sample survey, the optimum allocation of any characteristic may not be optimum for others. Thus the problem arises to find out an allocation which may be optimum for all characteristics in some sense. Therefore a compromise criterion is needed to workout such allocation. In this paper, the procedure of estimation of p-population means is discussed in the presence of nonresponse when the use of linear cost function is not advisable. A solution procedure is suggested by using lexicographic goal programming problem. The numerical illustrations are given for its practical utility.  相似文献   

5.
Selecting an optimal 2k?pfractional factorial is structured as a mathematical programming problem. An algorithm is defined for the solution, and the case of additive costs is shown to have a known solution for resolution III designs.  相似文献   

6.
Abstract

Reliability is a major concern in the process of software development because unreliable software can cause failure in the computer system that can be hazardous. A way to enhance the reliability of software is to detect and remove the faults during the testing phase, which begins with module testing wherein modules are tested independently to remove a substantial number of faults within a limited resource. Therefore, the available resource must be allocated among the modules in such a way that the number of faults is removed as much as possible from each of the modules to achieve higher software reliability. In this article, we discuss the problem of optimal resource allocation of the testing resource for a modular software system, which maximizes the number of faults removed subject to the conditions that the amount of testing-effort is fixed, a certain percentage of faults is to be removed and a desired level of reliability is to be achieved. The problem is formulated as a non linear programming problem (NLPP), which is modeled by the inflection S-shaped software reliability growth models (SRGM) based on a non homogeneous Poisson process (NHPP) which incorporates the exponentiated Weibull (EW) testing-effort functions. A solution procedure is then developed using a dynamic programming technique to solve the NLPP. Furthermore, three special cases of optimum resource allocations are also discussed. Finally, numerical examples using three sets of software failure data are presented to illustrate the procedure developed and to validate the performance of the strategies proposed in this article. Experimental results indicate that the proposed strategies may be helpful to software project managers for making the best decisions in allocating the testing resource. In addition, the results are compared with those of Kapur et al. (2004), Huang and Lyu (2005), and Jha et al. (2010) that are available in the literature to deal the similar problems addressed in this article. It reveals that the proposed dynamic programming method for the testing-resource allocation problem yields a gain in efficiency over other methods.  相似文献   

7.
In stratified sample surveys, the problem of determining the optimum allocation is well known due to articles published in 1923 by Tschuprow and in 1934 by Neyman. The articles suggest the optimum sample sizes to be selected from each stratum for which sampling variance of the estimator is minimum for fixed total cost of the survey or the cost is minimum for a fixed precision of the estimator. If in a sample survey more than one characteristic is to be measured on each selected unit of the sample, that is, the survey is a multi-response survey, then the problem of determining the optimum sample sizes to various strata becomes more complex because of the non-availability of a single optimality criterion that suits all the characteristics. Many authors discussed compromise criterion that provides a compromise allocation, which is optimum for all characteristics, at least in some sense. Almost all of these authors worked out the compromise allocation by minimizing some function of the sampling variances of the estimators under a single cost constraint. A serious objection to this approach is that the variances are not unit free so that minimizing any function of variances may not be an appropriate objective to obtain a compromise allocation. This fact suggests the use of coefficient of variations instead of variances. In the present article, the problem of compromise allocation is formulated as a multi-objective non-linear programming problem. By linearizing the non-linear objective functions at their individual optima, the problem is approximated to an integer linear programming problem. Goal programming technique is then used to obtain a solution to the approximated problem.  相似文献   

8.
In stratified sampling, usually the cost function is taken as a linear function of sample sizes n h . In many practical situations, the linear cost function does not approximate the actual cost incurred adequately. For example, when the cost of travelling between the units selected in the sample within a stratum is significant, instead of a linear cost function, a cost function that is quadratic in √n h will be a more close approximation to the actual cost. In this paper, the problem is formulated as multi-objective nonlinear integer programming problem with quadratic cost under three different situations, i.e. complete, partial or null information about the population. A numerical example is also presented to illustrate the computational details.  相似文献   

9.
In multivariate cases, usually the minimization of sampling variances is considered as an objective under a cost constraint. Since the variances are not unit free, it is more logical to consider the minimization of the squared coefficients of variation as an objective. In this paper, the problem of optimum compromise allocation in multivariate stratified sampling in the case of non-response as a multi-objective all-integer nonlinear programming problem is described. A solution procedure using four different approaches is considered, namely the value function, goal programming,∈-constraint and distance based, to obtain the compromise allocation for non-response. A numerical example is also presented to illustrate the computational details.  相似文献   

10.
In stratified sampling when strata weights are unknown a double sampling technique may be used to estimate them. A large simple random sample from the unstratified population is drawn and units falling in each stratum are recorded. A stratified random sample is then selected and simple random subsamples are obtained out of the previously selected units of the strata. This procedure is called double sampling for stratification. If the problem of non-response is there, then subsamples are divided into classes of respondents and non-respondents. A second subsample is then obtained out of the non-respondents and an attempt is made to obtain the information by increasing efforts, persuasion and call backs. In this paper, the problem of obtaining a compromise allocation in multivariate stratified random sampling is discussed when strata weights are unknown and non-response is present. The problem turns out to be a multiobjective non-linear integer programming problem. An approximation of the problem to an integer linear programming problem by linearizing the non-linear objective functions at their individual optima is worked out. Chebyshev's goal programming technique is then used to solve the approximated problem. A numerical example is also presented to exhibit the practical application of the developed procedure.  相似文献   

11.
We apply geometric programming, developed by Duffin, Peterson Zener (1967), to the optimal allocation of stratified samples. As an introduction, we show how geometric programming is used to allocate samples according to Neyman (1934), using the data of Cornell (1947) and following the exposition of Cochran (1953).

Then we use geometric programming to allocate an integrated sample introduced by Schwartz (1978) for more efficient sampling of three U. S. Federal welfare quality control systems, Aid to Families with Dependent Children, Food Stamps and Medicaid.

We develop methods for setting up the allocation problem, interpreting it as a geometric programming primal problem, transforming it to the corresponding dual problem, solving that, and finding the sample sizes required in the allocation problem. We show that the integrated sample saves sampling costs.  相似文献   

12.
In this article, we propose a new mixed chain sampling plan based on the process capability index Cpk, where the quality characteristic of interest having double specification limits and follows the normal distribution with unknown mean and variance. In the proposed mixed plan, the chain sampling inspection plan is used for the inspection of attribute quality characteristics. The advantages of this proposed mixed sampling plan are also discussed. Tables are constructed to determine the optimal parameters for practical applications by formulating the problem as a non linear programming in which the objective function to be minimized is the average sample number and the constraints are related to lot acceptance probabilities at acceptable quality level and limiting quality level under the operating characteristic curve. The practical application of the proposed mixed sampling plan is explained with an illustrative example. Comparison of the proposed sampling plan is also made with other existing sampling plans.  相似文献   

13.
提出一种模糊多分配p枢纽站中位问题,其中运输成本定义为模糊变量,问题的目标函数是在给定的可信性水平下,最小化总的运输成本。对于梯形和正态运输成本,问题等价于确定的混合整数线性规划问题。在实证分析中,选取了辽宁省煤炭产业的相关面板数据,分析计算在不同可信度水平下煤炭运输枢纽站设立的数量和位置,再利用传统的优化方法(如分枝定界法)求解。经计算,这一模型和求解方法可以用来解决辽宁省煤炭运输的选址问题。  相似文献   

14.
In testing statistical hypotheses, as in other statistical problems, we may be confronted with fuzzy concepts. This paper deals with the problem of testing hypotheses, when the hypotheses are fuzzy and the data are crisp. We first introduce the notion of fuzzy p-value, by applying the extension principle and then present an approach for testing fuzzy hypotheses by comparing a fuzzy p-value and a fuzzy significance level, based on a comparison of two fuzzy sets. Numerical examples are also provided to illustrate the approach.  相似文献   

15.
The quality characteristics, which are known as attributes, cannot be conveniently and numerically represented. Generally, the attribute data can be regarded as the fuzzy data, which are ubiquitous in the manufacturing process and cannot be measured precisely and often be collected by visual inspection. In this paper, we construct a p control chart for monitoring the fraction of nonconforming items in the process in which fuzzy sample data are collected from the manufacturing process. The resolution identity – a well-known theorem in the fuzzy set theory – is invoked to construct the control limits of fuzzy-p control charts using fuzzy data. In order to determine whether the plotted imprecise fraction of nonconforming items is within the fuzzy lower and upper control limits, we also propose a ranking method for a set of fuzzy numbers. Using the fuzzy-p control charts and the proposed acceptability function to classify the manufacturing process allows the decision-maker to make linguistic decisions such as rather in control or rather out of control. A practical example is provided to describe the applicability of the fuzzy set theory to a conventional p control chart.  相似文献   

16.
This paper describes two new, mathematical programming-based approaches for evaluating general, one- and two-sidedp-variate normal probabilities where the variance-covariance matrix (of arbitrary structure) is singular with rankr(r<pand r and p can be of unlimited dimensions. In both cases, principal components are used to transform the original, ill-definedp-dimensional integral into a well-definedrdimensional integral over a convex polyhedron. The first algorithm that is presented uses linear programming coupled with a Gauss-Legendre quadrature scheme to compute this integral, while the second algorithm uses multi-parametric programming techniques in order to significantly reduce the number of optimization problems that need to be solved. The application of the algorithms is demonstrated and aspects of computational performance are discussed through a number of examples, ranging from a practical problem that arises in chemical engineering to larger, numerical examples.  相似文献   

17.
18.
This paper deals with the problem of testing statistical hypotheses when both the hypotheses and data are fuzzy. To this end, we first introduce the concept of fuzzy p-value and then develop an approach for testing fuzzy hypotheses by comparing a fuzzy p-value and a fuzzy significance level. Numerical examples are provided to illustrate the approach for different cases.  相似文献   

19.
Bénasséni [Partial additive constant, J. Statist. Comput. Simul. 49 (1994), pp. 179–193] studied the partial additive constant problem in multidimensional scaling. This problem is quite challenging to solve, and Bénasséni proposed a numerical procedure for two special cases: the cross-set partial perturbation and the within-set partial perturbation. This paper casts the problem as a modern quadratic semi-definite programming (QSDP) problem, which is not only capable of dealing with general cases, but also enjoys a number of good properties. One of the good properties is that the proposed approach can find the minimal constant under very weak conditions. Another is that there exists a ready-to-use numerical package such as the QSDP solver in Toh [An inexact path-following algorithm for convex quadratic SDP, Math. Program. 112 (2008), pp. 221–254], allowing a great deal of flexibility in choosing the index set to which the partial constant should be added. Our numerical results show a significant improvement over that reported in Bénasséni (1994).  相似文献   

20.
An algorithm is presented to construct balanced treatment incomplete block (BTIB) designs using a linear integer programming approach. Construction of BTIB designs using the proposed approach is illustrated with an example. A list of efficient BTIB designs for 2 ? v ? 12, v + 1 ? b ? 50, 2 ? k ? min(10, v), r ? 10, r0 ? 20 is provided. The proposed algorithm is implemented as part of an R package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号