首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

2.
3.
Summary. We describe a model-based approach to analyse space–time surveillance data on meningococcal disease. Such data typically comprise a number of time series of disease counts, each representing a specific geographical area. We propose a hierarchical formulation, where latent parameters capture temporal, seasonal and spatial trends in disease incidence. We then add—for each area—a hidden Markov model to describe potential additional (autoregressive) effects of the number of cases at the previous time point. Different specifications for the functional form of this autoregressive term are compared which involve the number of cases in the same or in neighbouring areas. The two states of the Markov chain can be interpreted as representing an 'endemic' and a 'hyperendemic' state. The methodology is applied to a data set of monthly counts of the incidence of meningococcal disease in the 94 départements of France from 1985 to 1997. Inference is carried out by using Markov chain Monte Carlo simulation techniques in a fully Bayesian framework. We emphasize that a central feature of our model is the possibility of calculating—for each region and each time point—the posterior probability of being in a hyperendemic state, adjusted for global spatial and temporal trends, which we believe is of particular public health interest.  相似文献   

4.
Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample from these distributions using a sequential Monte Carlo approach. We demonstrate state-of-the-art performance for several applications of the proposed approach.  相似文献   

5.
Most regression problems in practice require flexible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a unified approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with fixed effects, metrical covariates with non-linear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random field priors with different forms and degrees of smoothness. We applied the approach in several case-studies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications.  相似文献   

6.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

7.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically, in this article we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with a prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between models with different numbers of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split–merge proposals to improve the performance of the MCMC algorithm. We apply our proposed algorithms to simulated data as well as a real-data example, and the results demonstrate the desired performance of the new sampler.  相似文献   

8.
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.  相似文献   

9.
Summary.  We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples that differ in terms of both substantive area and data structure. A multilevel discrete time survival analysis involves expanding the data set so that the model can be cast as a standard multilevel binary response model. For such models it has been shown that MCMC methods have advantages in terms of reducing estimate bias. However, the data expansion results in very large data sets for which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way of improving the mixing will result in both speeding up the methods and more confidence in the estimates that are produced. The MCMC methodological literature is full of alternative algorithms designed to improve mixing of chains and we describe three reparameterization techniques that are easy to implement in available software. We consider two examples of multilevel survival analysis: incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application we show where the reparameterization techniques can be used and assess their performance.  相似文献   

10.
In this article, to reduce computational load in performing Bayesian variable selection, we used a variant of reversible jump Markov chain Monte Carlo methods, and the Holmes and Held (HH) algorithm, to sample model index variables in logistic mixed models involving a large number of explanatory variables. Furthermore, we proposed a simple proposal distribution for model index variables, and used a simulation study and real example to compare the performance of the HH algorithm with our proposed and existing proposal distributions. The results show that the HH algorithm with our proposed proposal distribution is a computationally efficient and reliable selection method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号