首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The process comparing the empirical cumulative distribution function of the sample with a parametric estimate of the cumulative distribution function is known as the empirical process with estimated parameters and has been extensively employed in the literature for goodness‐of‐fit testing. The simplest way to carry out such goodness‐of‐fit tests, especially in a multivariate setting, is to use a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters, or the dimension of the data increase. An alternative resampling technique based on a fast weighted bootstrap is proposed in this paper, and is studied both theoretically and empirically. The outcome of this work is a generic and computationally efficient multiplier goodness‐of‐fit procedure that can be used as a large‐sample alternative to the parametric bootstrap. In order to approximately determine how large the sample size needs to be for the parametric and weighted bootstraps to have roughly equivalent powers, extensive Monte Carlo experiments are carried out in dimension one, two and three, and for models containing up to nine parameters. The computational gains resulting from the use of the proposed multiplier goodness‐of‐fit procedure are illustrated on trivariate financial data. A by‐product of this work is a fast large‐sample goodness‐of‐fit procedure for the bivariate and trivariate t distribution whose degrees of freedom are fixed. The Canadian Journal of Statistics 40: 480–500; 2012 © 2012 Statistical Society of Canada  相似文献   

3.
4.
Abstract. New tests for the hypothesis of bivariate extreme‐value dependence are proposed. All test statistics that are investigated are continuous functionals of either Kendall's process or its version with estimated parameters. The procedures considered are based on linear combinations of moments and on Cramér–von Mises distances. A suitably adapted version of the multiplier central limit theorem for Kendall's process enables the computation of asymptotically valid p‐values. The power of the tests is evaluated for small, moderate and large sample sizes, as well as asymptotically, under local alternatives. An illustration with a real data set is presented.  相似文献   

5.
In recent years analyses of dependence structures using copulas have become more popular than the standard correlation analysis. Starting from Aas et al. ( 2009 ) regular vine pair‐copula constructions (PCCs) are considered the most flexible class of multivariate copulas. PCCs are involved objects but (conditional) independence present in data can simplify and reduce them significantly. In this paper the authors detect (conditional) independence in a particular vine PCC model based on bivariate t copulas by deriving and implementing a reversible jump Markov chain Monte Carlo algorithm. However, the methodology is general and can be extended to any regular vine PCC and to all known bivariate copula families. The proposed approach considers model selection and estimation problems for PCCs simultaneously. The effectiveness of the developed algorithm is shown in simulations and its usefulness is illustrated in two real data applications. The Canadian Journal of Statistics 39: 239–258; 2011 © 2011 Statistical Society of Canada  相似文献   

6.
7.
8.
Starting from the characterization of extreme‐value copulas based on max‐stability, large‐sample tests of extreme‐value dependence for multivariate copulas are studied. The two key ingredients of the proposed tests are the empirical copula of the data and a multiplier technique for obtaining approximate p‐values for the derived statistics. The asymptotic validity of the multiplier approach is established, and the finite‐sample performance of a large number of candidate test statistics is studied through extensive Monte Carlo experiments for data sets of dimension two to five. In the bivariate case, the rejection rates of the best versions of the tests are compared with those of the test of Ghoudi et al. (1998) recently revisited by Ben Ghorbal et al. (2009). The proposed procedures are illustrated on bivariate financial data and trivariate geological data. The Canadian Journal of Statistics 39: 703–720; 2011. © 2011 Statistical Society of Canada  相似文献   

9.
10.
A goodness‐of‐fit procedure is proposed for parametric families of copulas. The new test statistics are functionals of an empirical process based on the theoretical and sample versions of Spearman's dependence function. Conditions under which this empirical process converges weakly are seen to hold for many families including the Gaussian, Frank, and generalized Farlie–Gumbel–Morgenstern systems of distributions, as well as the models with singular components described by Durante [Durante ( 2007 ) Comptes Rendus Mathématique. Académie des Sciences. Paris, 344, 195–198]. Thanks to a parametric bootstrap method that allows to compute valid P‐values, it is shown empirically that tests based on Cramér–von Mises distances keep their size under the null hypothesis. Simulations attesting the power of the newly proposed tests, comparisons with competing procedures and complete analyses of real hydrological and financial data sets are presented. The Canadian Journal of Statistics 37: 80‐101; 2009 © 2009 Statistical Society of Canada  相似文献   

11.
12.
13.
Ghoudi, Khoudraji & Rivest [The Canadian Journal of Statistics 1998;26:187–197] showed how to test whether the dependence structure of a pair of continuous random variables is characterized by an extreme‐value copula. The test is based on a U‐statistic whose finite‐ and large‐sample variance are determined by the present authors. They propose estimates of this variance which they compare to the jackknife estimate of Ghoudi, Khoudraji & Rivest ( 1998 ) through simulations. They study the finite‐sample and asymptotic power of the test under various alternatives. They illustrate their approach using financial and geological data. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

14.
15.
16.
Using only bivariate copulas as building blocks, regular vine copulas constitute a flexible class of high‐dimensional dependency models. However, the flexibility comes along with an exponentially increasing complexity in larger dimensions. In order to counteract this problem, we propose using statistical model selection techniques to either truncate or simplify a regular vine copula. As a special case, we consider the simplification of a canonical vine copula using a multivariate copula as previously treated by Heinen & Valdesogo ( 2009 ) and Valdesogo ( 2009 ). We validate the proposed approaches by extensive simulation studies and use them to investigate a 19‐dimensional financial data set of Norwegian and international market variables. The Canadian Journal of Statistics 40: 68–85; 2012 © 2012 Statistical Society of Canada  相似文献   

17.
This paper discusses multivariate interval‐censored failure time data observed when several correlated survival times of interest exist and only interval censoring is available for each survival time. Such data occur in many fields, for instance, studies of the development of physical symptoms or diseases in several organ systems. A marginal inference approach was used to create a linear transformation model and applied to bivariate interval‐censored data arising from a diabetic retinopathy study and an AIDS study. The results of simulation studies that were conducted to evaluate the performance of the presented approach suggest that it performs well. The Canadian Journal of Statistics 41: 275–290; 2013 © 2013 Statistical Society of Canada  相似文献   

18.
Motivated by time series of atmospheric concentrations of certain pollutants the authors develop bent‐cable regression for autocorrelated errors. Bent‐cable regression extends the popular piecewise linear (broken‐stick) model, allowing for a smooth change region of any non‐negative width. Here the authors consider autoregressive noise added to a bent‐cable mean structure, with unknown regression and time series parameters. They develop asymptotic theory for conditional least‐squares estimation in a triangular array framework, wherein each segment of the bent cable contains an increasing number of observations while the autoregressive order remains constant as the sample size grows. They explore the theory in a simulation study, develop implementation details, apply the methodology to the motivating pollutant dataset, and provide a scientific interpretation of the bent‐cable change point not discussed previously. The Canadian Journal of Statistics 38: 386–407; 2010 © 2010 Statistical Society of Canada  相似文献   

19.
In this article, we develop regression models with cross‐classified responses. Conditional independence structures can be explored/exploited through the selective inclusion/exclusion of terms in a certain functional ANOVA decomposition, and the estimation is done nonparametrically via the penalized likelihood method. A cohort of computational and data analytical tools are presented, which include cross‐validation for smoothing parameter selection, Kullback–Leibler projection for model selection, and Bayesian confidence intervals for odds ratios. Random effects are introduced to model possible correlations such as those found in longitudinal and clustered data. Empirical performances of the methods are explored in simulation studies of limited scales, and a real data example is presented using some eyetracking data from linguistic studies. The techniques are implemented in a suite of R functions, whose usage is briefly described in the appendix. The Canadian Journal of Statistics 39: 591–609; 2011. © 2011 Statistical Society of Canada  相似文献   

20.
Positive quadrant dependence is a specific dependence structure that is of practical importance in for example modelling dependencies in insurance and actuarial sciences. This dependence structure imposes a constraint on the copula function. The interest in this paper is to test for positive quadrant dependence. One way to assess the distribution of the test statistics under the null hypothesis of positive quadrant dependence is to resample from a constrained copula. This requires constrained estimation of a copula function. We show that this use of resampling under a constrained copula improves considerably the power performance of existing testing procedures. We propose two resampling procedures, one based on a parametric constrained copula estimation and one relying on nonparametric estimation of a positive quadrant dependence copula, and discuss their properties. The finite‐sample performances of the resulting testing procedures are evaluated via a simulation study that also includes comparisons with existing tests. Finally, a data set of Danish fire insurance claims is tested for positive quadrant dependence. The Canadian Journal of Statistics 41: 36–64; 2013 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号