首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose here a robust multivariate extension of the bivariate Birnbaum–Saunders (BS) distribution derived by Kundu et al. [Bivariate Birnbaum–Saunders distribution and associated inference. J Multivariate Anal. 2010;101:113–125], based on scale mixtures of normal (SMN) distributions that are used for modelling symmetric data. This resulting multivariate BS-type distribution is an absolutely continuous distribution whose marginal and conditional distributions are of BS-type distribution of Balakrishnan et al. [Estimation in the Birnbaum–Saunders distribution based on scalemixture of normals and the EM algorithm. Stat Oper Res Trans. 2009;33:171–192]. Due to the complexity of the likelihood function, parameter estimation by direct maximization is very difficult to achieve. For this reason, we exploit the nice hierarchical representation of the proposed distribution to propose a fast and accurate EM algorithm for computing the maximum likelihood (ML) estimates of the model parameters. We then evaluate the finite-sample performance of the developed EM algorithm and the asymptotic properties of the ML estimates through empirical experiments. Finally, we illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.  相似文献   

2.
In this work, we study the maximum likelihood (ML) estimation problem for the parameters of the two-piece (TP) distribution based on the scale mixtures of normal (SMN) distributions. This is a family of skewed distributions that also includes the scales mixtures of normal class, and is flexible enough for modeling symmetric and asymmetric data. The ML estimates of the proposed model parameters are obtained via an expectation-maximization (EM)-type algorithm.  相似文献   

3.
In this article, by using the constant and random selection matrices, several properties of the maximum likelihood (ML) estimates and the ML estimator of a normal distribution with missing data are derived. The constant selection matrix allows us to obtain an explicit form of the ML estimates and the exact relationship between the EM algorithm and the score function. The random selection matrix allows us to clarify how the missing-data mechanism works in the proof of the consistency of the ML estimator, to derive the asymptotic properties of the sequence by the EM algorithm, and to derive the information matrix.  相似文献   

4.
The paper is focussing on some recent developments in nonparametric mixture distributions. It discusses nonparametric maximum likelihood estimation of the mixing distribution and will emphasize gradient type results, especially in terms of global results and global convergence of algorithms such as vertex direction or vertex exchange method. However, the NPMLE (or the algorithms constructing it) provides also an estimate of the number of components of the mixing distribution which might be not desirable for theoretical reasons or might be not allowed from the physical interpretation of the mixture model. When the number of components is fixed in advance, the before mentioned algorithms can not be used and globally convergent algorithms do not exist up to now. Instead, the EM algorithm is often used to find maximum likelihood estimates. However, in this case multiple maxima are often occuring. An example from a meta-analyis of vitamin A and childhood mortality is used to illustrate the considerable, inferential importance of identifying the correct global likelihood. To improve the behavior of the EM algorithm we suggest a combination of gradient function steps and EM steps to achieve global convergence leading to the EM algorithm with gradient function update (EMGFU). This algorithms retains the number of components to be exactly k and typically converges to the global maximum. The behavior of the algorithm is highlighted at hand of several examples.  相似文献   

5.
Owing to the nature of the problems and the design of questionnaires, discrete polytomous data are very common in behavioural, medical and social research. Analysing the relationships between the manifest and the latent variables based on mixed polytomous and continuous data has proven to be difficult. A general structural equation model is investigated for these mixed outcomes. Maximum likelihood (ML) estimates of the unknown thresholds and the structural parameters in the covariance structure are obtained. A Monte Carlo–EM algorithm is implemented to produce the ML estimates. It is shown that closed form solutions can be obtained for the M-step, and estimates of the latent variables are produced as a by-product of the analysis. The method is illustrated with a real example.  相似文献   

6.
7.
This paper proposes a method for estimating the parameters in a generalized linear model with missing covariates. The missing covariates are assumed to come from a continuous distribution, and are assumed to be missing at random. In particular, Gaussian quadrature methods are used on the E-step of the EM algorithm, leading to an approximate EM algorithm. The parameters are then estimated using the weighted EM procedure given in Ibrahim (1990). This approximate EM procedure leads to approximate maximum likelihood estimates, whose standard errors and asymptotic properties are given. The proposed procedure is illustrated on a data set.  相似文献   

8.
The maximum likelihood estimation of parameters of the Poisson binomial distribution, based on a sample with exact and grouped observations, is considered by applying the EM algorithm (Dempster et al, 1977). The results of Louis (1982) are used in obtaining the observed information matrix and accelerating the convergence of the EM algorithm substantially. The maximum likelihood estimation from samples consisting entirely of complete (Sprott, 1958) or grouped observations are treated as special cases of the estimation problem mentioned above. A brief account is given for the implementation of the EM algorithm when the sampling distribution is the Neyman Type A since the latter is a limiting form of the Poisson binomial. Numerical examples based on real data are included.  相似文献   

9.
The family of power series cure rate models provides a flexible modeling framework for survival data of populations with a cure fraction. In this work, we present a simplified estimation procedure for the maximum likelihood (ML) approach. ML estimates are obtained via the expectation-maximization (EM) algorithm where the expectation step involves computation of the expected number of concurrent causes for each individual. It has the big advantage that the maximization step can be decomposed into separate maximizations of two lower-dimensional functions of the regression and survival distribution parameters, respectively. Two simulation studies are performed: the first to investigate the accuracy of the estimation procedure for different numbers of covariates and the second to compare our proposal with the direct maximization of the observed log-likelihood function. Finally, we illustrate the technique for parameter estimation on a dataset of survival times for patients with malignant melanoma.  相似文献   

10.
This article considers a discrete-time Markov chain for modeling transition probabilities when multiple successive observations are missing at random between two observed outcomes using three methods: a na\"?ve analog of complete-case analysis using the observed one-step transitions alone, a non data-augmentation method (NL) by solving nonlinear equations, and a data-augmentation method, the Expectation-Maximization (EM) algorithm. The explicit form of the conditional log-likelihood given the observed information as required by the E step is provided, and the iterative formula in the M step is expressed in a closed form. An empirical study was performed to examine the accuracy and precision of the estimates obtained in the three methods under ignorable missing mechanisms of missing completely at random and missing at random. A dataset from the mental health arena was used for illustration. It was found that both data-augmentation and nonaugmentation methods provide accurate and precise point estimation, and that the na\"?ve method resulted in estimates of the transition probabilities with similar bias but larger MSE. The NL method and the EM algorithm in general provide similar results whereas the latter provides conditional expected row margins leading to smaller standard errors.  相似文献   

11.
Weak consistency and asymptotic normality is shown for a stochastic EM algorithm for censored data from a mixture of distributions under lognormal assumptions. The asymptotic properties hold for all parameters of the distributions, including the mixing parameter. In order to make parameter estimation meaningful it is necessary to know that the censored mixture distribution is identifiable. General conditions under which this is the case are given. The stochastic EM algorithm addressed in this paper is used for estimation of wood fibre length distributions based on optically measured data from cylindric wood samples (increment cores).  相似文献   

12.
ABSTRACT

Censoring frequently occurs in survival analysis but naturally observed lifetimes are not of a large size. Thus, inferences based on the popular maximum likelihood (ML) estimation which often give biased estimates should be corrected in the sense of bias. Here, we investigate the biases of ML estimates under the progressive type-II censoring scheme (pIIcs). We use a method proposed in Efron and Johnstone [Fisher's information in terms of the hazard rate. Technical Report No. 264, January 1987, Stanford University, Stanford, California; 1987] to derive general expressions for bias corrected ML estimates under the pIIcs. This requires derivation of the Fisher information matrix under the pIIcs. As an application, exact expressions are given for bias corrected ML estimates of the Weibull distribution under the pIIcs. The performance of the bias corrected ML estimates and ML estimates are compared by simulations and a real data application.  相似文献   

13.
Finite mixtures of multivariate skew t (MST) distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour. Recently, they have been exploited as an effective tool for modelling flow cytometric data. A number of algorithms for the computation of the maximum likelihood (ML) estimates for the model parameters of mixtures of MST distributions have been put forward in recent years. These implementations use various characterizations of the MST distribution, which are similar but not identical. While exact implementation of the expectation-maximization (EM) algorithm can be achieved for ‘restricted’ characterizations of the component skew t-distributions, Monte Carlo (MC) methods have been used to fit the ‘unrestricted’ models. In this paper, we review several recent fitting algorithms for finite mixtures of multivariate skew t-distributions, at the same time clarifying some of the connections between the various existing proposals. In particular, recent results have shown that the EM algorithm can be implemented exactly for faster computation of ML estimates for mixtures with unrestricted MST components. The gain in computational time is effected by noting that the semi-infinite integrals on the E-step of the EM algorithm can be put in the form of moments of the truncated multivariate non-central t-distribution, similar to the restricted case, which subsequently can be expressed in terms of the non-truncated form of the central t-distribution function for which fast algorithms are available. We present comparisons to illustrate the relative performance of the restricted and unrestricted models, and demonstrate the usefulness of the recently proposed methodology for the unrestricted MST mixture, by some applications to three real datasets.  相似文献   

14.
The Type-II progressive censoring scheme has become very popular for analyzing lifetime data in reliability and survival analysis. However, no published papers address parameter estimation under progressive Type-II censoring for the mixed exponential distribution (MED), which is an important model for reliability and survival analysis. This is the problem that we address in this paper. It is noted that maximum likelihood estimation of unknown parameters cannot be obtained in closed form due to the complicated log-likelihood function. We solve this problem by using the EM algorithm. Finally, we obtain closed form estimates of the model. The proposed methods are illustrated by both some simulations and a case analysis.  相似文献   

15.
Mini-batch algorithms have become increasingly popular due to the requirement for solving optimization problems, based on large-scale data sets. Using an existing online expectation–maximization (EM) algorithm framework, we demonstrate how mini-batch (MB) algorithms may be constructed, and propose a scheme for the stochastic stabilization of the constructed mini-batch algorithms. Theoretical results regarding the convergence of the mini-batch EM algorithms are presented. We then demonstrate how the mini-batch framework may be applied to conduct maximum likelihood (ML) estimation of mixtures of exponential family distributions, with emphasis on ML estimation for mixtures of normal distributions. Via a simulation study, we demonstrate that the mini-batch algorithm for mixtures of normal distributions can outperform the standard EM algorithm. Further evidence of the performance of the mini-batch framework is provided via an application to the famous MNIST data set.  相似文献   

16.
This paper examines the formation of maximum likelihood estimates of cell means in analysis of variance problems for cells with missing observations. Methods of estimating the means for missing cells has a long history which includes iterative maximum likelihood techniques, approximation techniques and ad hoc techniques. The use of the EM algorithm to form maximum likelihood estimates has resolved most of the issues associated with this problem. Implementation of the EM algorithm entails specification of a reduced model. As demonstrated in this paper, when there are several missing cells, it is possible to specify a reduced model that results in an unidentifiable likelihood. The EM algorithm in this case does not converge, although the slow divergence may often be mistaken by the unwary as convergence. This paper presents a simple matrix method of determining whether or not the reduced model results in an identifiable likelihood, and consequently in an EM algorithm that converges. We also show the EM algorithm in this case to be equivalent to a method which yields a closed form solution.  相似文献   

17.
In this paper, we expand a first-order nonlinear autoregressive (AR) model with skew normal innovations. A semiparametric method is proposed to estimate a nonlinear part of model by using the conditional least squares method for parametric estimation and the nonparametric kernel approach for the AR adjustment estimation. Then computational techniques for parameter estimation are carried out by the maximum likelihood (ML) approach using Expectation-Maximization (EM) type optimization and the explicit iterative form for the ML estimators are obtained. Furthermore, in a simulation study and a real application, the accuracy of the proposed methods is verified.  相似文献   

18.
Latent variable models are widely used for jointly modeling of mixed data including nominal, ordinal, count and continuous data. In this paper, we consider a latent variable model for jointly modeling relationships between mixed binary, count and continuous variables with some observed covariates. We assume that, given a latent variable, mixed variables of interest are independent and count and continuous variables have Poisson distribution and normal distribution, respectively. As such data may be extracted from different subpopulations, consideration of an unobserved heterogeneity has to be taken into account. A mixture distribution is considered (for the distribution of the latent variable) which accounts the heterogeneity. The generalized EM algorithm which uses the Newton–Raphson algorithm inside the EM algorithm is used to compute the maximum likelihood estimates of parameters. The standard errors of the maximum likelihood estimates are computed by using the supplemented EM algorithm. Analysis of the primary biliary cirrhosis data is presented as an application of the proposed model.  相似文献   

19.
This paper concerns maximum likelihood estimation for the semiparametric shared gamma frailty model; that is the Cox proportional hazards model with the hazard function multiplied by a gamma random variable with mean 1 and variance θ. A hybrid ML-EM algorithm is applied to 26 400 simulated samples of 400 to 8000 observations with Weibull hazards. The hybrid algorithm is much faster than the standard EM algorithm, faster than standard direct maximum likelihood (ML, Newton Raphson) for large samples, and gives almost identical results to the penalised likelihood method in S-PLUS 2000. When the true value θ0 of θ is zero, the estimates of θ are asymptotically distributed as a 50–50 mixture between a point mass at zero and a normal random variable on the positive axis. When θ0 > 0, the asymptotic distribution is normal. However, for small samples, simulations suggest that the estimates of θ are approximately distributed as an x ? (100 ? x)% mixture, 0 ≤ x ≤ 50, between a point mass at zero and a normal random variable on the positive axis even for θ0 > 0. In light of this, p-values and confidence intervals need to be adjusted accordingly. We indicate an approximate method for carrying out the adjustment.  相似文献   

20.
Parameters of a finite mixture model are often estimated by the expectation–maximization (EM) algorithm where the observed data log-likelihood function is maximized. This paper proposes an alternative approach for fitting finite mixture models. Our method, called the iterative Monte Carlo classification (IMCC), is also an iterative fitting procedure. Within each iteration, it first estimates the membership probabilities for each data point, namely the conditional probability of a data point belonging to a particular mixing component given that the data point value is obtained, it then classifies each data point into a component distribution using the estimated conditional probabilities and the Monte Carlo method. It finally updates the parameters of each component distribution based on the classified data. Simulation studies were conducted to compare IMCC with some other algorithms for fitting mixture normal, and mixture t, densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号