首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

2.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

3.
A doubly stochastic process {x(b,t);b?B,t?Z} is considered, with (B,β,Pβ) being a probability space so that for each b, {X(b,t);t ? Z} is a stationary process with an absolutely continuous spectral distribution. The population spectrum is defined as f(ω) = EB[Q(b,ω)] with Q(b,ω) being the spectral density function of X(b,t). The aim of this paper is to estimate f(ω) by means of a random sample b1,…,br from (B,β,Pβ). For each b1? B, the processes X(b1,t) are observed at the same times t=1,…,N. Thus, r time series (x(b1,t)} are available in order to estimate f(ω). A model for each individual periodogram, which involves f(ω), is formulated. It has been proven that a certain family of linear stationary processes follows the above model In this context, a kernel estimator is proposed in order to estimate f(ω). The bias, variance and asymptotic distribution of this estimator are investigated under certain conditions.  相似文献   

4.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

5.
The general Gauss–Markov model, Y = e, E(e) = 0, Cov(e) = σ 2 V, has been intensively studied and widely used. Most studies consider covariance matrices V that are nonsingular but we focus on the most difficult case wherein C(X), the column space of X, is not contained in C(V). This forces V to be singular. Under this condition there exist nontrivial linear functions of Q that are known with probability 1 (perfectly) where ${C(Q)=C(V)^\perp}$ . To treat ${C(X) \not \subset C(V)}$ , much of the existing literature obtains estimates and tests by replacing V with a pseudo-covariance matrix T = V + XUX′ for some nonnegative definite U such that ${C(X) \subset C(T)}$ , see Christensen (Plane answers to complex questions: the theory of linear models, 2002, Chap. 10). We find it more intuitive to first eliminate what is known about and then to adjust X while keeping V unchanged. We show that we can decompose β into the sum of two orthogonal parts, β = β 0 + β 1, where β 0 is known. We also show that the unknown component of X β is ${X\beta_1 \equiv \tilde{X} \gamma}$ , where ${C(\tilde{X})=C(X)\cap C(V)}$ . We replace the original model with ${Y-X\beta_0=\tilde{X}\gamma+e}$ , E(e) = 0, ${Cov(e)=\sigma^2V}$ and perform estimation and tests under this new model for which the simplifying assumption ${C(\tilde{X}) \subset C(V)}$ holds. This allows us to focus on the part of that parameters that are not known perfectly. We show that this method provides the usual estimates and tests.  相似文献   

6.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

7.
Let T2 i=z′iS?1zi, i==,…k be correlated Hotelling's T2 statistics under normality. where z=(z′i,…,z′k)′ and nS are independently distributed as Nkp((O,ρ?∑) and Wishart distribution Wp(∑, n), respectively. The purpose of this paper is to study the distribution function F(x1,…,xk) of (T2 i,…,T2 k) when n is large. First we derive an asymptotic expansion of the characteristic function of (T2 i,…,T2 k) up to the order n?2. Next we give asymptotic expansions for (T2 i,…,T2 k) in two cases (i)ρ=Ik and (ii) k=2 by inverting the expanded characteristic function up to the orders n?2 and n?1, respectively. Our results can be applied to the distribution function of max (T2 i,…,T2 k) as a special case.  相似文献   

8.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

9.
10.
It was proved in Cohn (1982) that for any finite offspring mean, supercritical Bellman-Harris process {Z(t)} there exist some norming constants {C(t)} such that {Z(t)/C(t)} converges almost surely to a non-degenerate random variable W. {C(t)} were defined to be the μ-quantiles of {Z(t)}. Schuh (1982) has given an alternative proof of this result, identifying C(t) as “the Seneta constants” 1/(-log Ft(-1)(γ)), where F1(γ) = E(γZ(t)). Both proofs are long and complicated. It will be shown here that a much simpler proof can be devised from Cohn (1982), if use is made of an elementarily proved property given in Schuh (1982).  相似文献   

11.
Consider that we have a collection of k populations π1, π2…,πk. The quality of the ith population is characterized by a real parameter θi and the population is to be designated as superior or inferior depending on how much the θi differs from θmax = max{θ1, θ2,…,θk}. From the set {π1, π2,…,πk}, we wish to select the subset of superior populations. In this paper we devise rules of selection which have the property that their selected set excludes all the inferior populations with probability at least 1?α, where a is a specified number.  相似文献   

12.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

13.
14.
This paper develops a new test statistic for testing hypotheses of the form HO M0=M1=…=Mk versus Ha: M0≦M1,M2,…,Mk] where at least one inequality is strict. M0 is the median of the control population and M1 is the median of the population receiving trearment i, i=1,2,…,k. The population distributions are assumed to be unknown but to differ only in their location parameters if at all. A simulation study is done comparing the new test statistic with the Chacko and the Kruskal-Wallis when the underlying population distributions are either normal, uniform, exponential, or Cauchy. Sample sizes of five, eight, ten, and twenty were considered. The new test statistic did better than the Chacko and the Kruskal-Wallis when the medians of the populations receiving the treatments were approximately the same  相似文献   

15.
The Galton–Watson process is a Markov chain modeling the population size of independently reproducing particles giving birth to k offspring with probability pk, k ? 0. In this paper, we consider defective Galton–Watson processes having defective reproduction laws, so that ∑k ? 0pk = 1 ? ? for some ? ∈ (0, 1). In this setting, each particle may send the process to a graveyard state Δ with probability ?. Such a Markov chain, having an enhanced state space {0, 1, …}∪{Δ}, gets eventually absorbed either at 0 or at Δ. Assuming that the process has avoided absorption until the observation time t, we are interested in its trajectories as t → ∞ and ? → 0.  相似文献   

16.
The probabilities and factorial moments of the univar iate and multivariate generalized (or compound) discrete di st r-Lbut Lons with probability generating functions H(t)=F(G(t)) and H(t1,…,tk)=F(G(t1,…,tk))or H(t1,…,tk) = F(G1(t1),…, Gk( tk)) are derived using finite difference operators.  相似文献   

17.
We present a decomposition of the correlation coefficient between xt and xt?k into three terms that include the partial and inverse autocorrelations. The first term accounts for the portion of the autocorrelation that is explained by the inner variables {xt?1 , xt?2 , …, x t? k+1}, the second one measures the portion explained by the outer variables {x t+1, x t+2, } ∪ {x t?k?1, x t?k?2,…} and the third term measures the correlation between x t and xt?k given all other variables. These terms, squared and summed, can form the basis of three portmanteau-type tests that are able to detect both deviation from white noise and lack of fit of an entertained model. Quantiles of their asymptotic sample distributions are complicated to derive at an adequate level of accuracy, so they are approximated using the Monte Carlo method. A simulation experiment is carried out to investigate significance levels and power of each test, and compare them to the portmanteau test.  相似文献   

18.
Let π01,…,πk be k+1 independent populations. For i=0,1,…,ki has the densit f(xi), where the (unknown) parameter θi belongs to an interval of the real line. Our goal is to select from π1,… πk (experimental treatments) those populations, if any, that are better (suitably defined) than π0 which is the control population. A locally optimal rule is derived in the class of rules for which Pr(πi is selected)γi, i=1,…,k, when θ01=?=θk. The criterion used for local optimality amounts to maximizing the efficiency in a certain sense of the rule in picking out the superior populations for specific configurations of θ=(θ0,…,θk) in a neighborhood of an equiparameter configuration. The general result is then applied to the following special cases: (a) normal means comparison — common known variance, (b) normal means comparison — common unknown variance, (c) gamma scale parameters comparison — known (unequal) shape parameters, and (d) comparison of regression slopes. In all these cases, the rule is obtained based on samples of unequal sizes.  相似文献   

19.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

20.
Consider the problem of testing the composite null hypothesis that a random sample X1,…,Xn is from a parent which is a member of a particular continuous parametric family of distributions against an alternative that it is from a separate family of distributions. It is shown here that in many cases a uniformly most powerful similar (UMPS) test exists for this problem, and, moreover, that this test is equivalent to a uniformly most powerful invariant (UMPI) test. It is also seen in the method of proof used that the UMPS test statistic Is a function of the statistics U1,…,Un?k obtained by the conditional probability integral transformations (CPIT), and thus that no Information Is lost by these transformations, It is also shown that these optimal tests have power that is a nonotone function of the null hypothesis class of distributions, so that, for example, if one additional parameter for the distribution is assumed known, then the power of the test can not lecrease. It Is shown that the statistics U1, …, Un?k are independent of the complete sufficient statistic, and that these statistics have important invariance properties. Two examples at given. The UMPS tests for testing the two-parameter uniform family against the two-parameter exponential family, and for testing one truncation parameter distribution against another one are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号