首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level.  相似文献   

2.
In many cancer trials patients are at risk of recurrence and death after the appearance and the successful treatment of the first diagnosed tumour. In this situation competing risks models that model several competing causes of therapy or surgery failure are a natural framework to describe the evolution of the disease.Typically, regression models for competing risks outcomes are based on proportional hazards model for each of the cause-specific hazard rates. An immediate practical problem is then how to deal with the abundance of regression parameters. The aim of reduced rank proportional hazards models is to reduce the number of parameters that need to be estimated while at the same time keeping the distinction between different transitions. They have the advantage of describing the competing risks model in fewer parameters, cope with transitions where few events are present and facilitate the interpretation of these estimates.We shall illustrate the use of this technique on 2795 patients from a breast cancer trial (EORTC 10854).  相似文献   

3.
Competing risks are common in clinical cancer research, as patients are subject to multiple potential failure outcomes, such as death from the cancer itself or from complications arising from the disease. In the analysis of competing risks, several regression methods are available for the evaluation of the relationship between covariates and cause-specific failures, many of which are based on Cox’s proportional hazards model. Although a great deal of research has been conducted on estimating competing risks, less attention has been devoted to linear regression modeling, which is often referred to as the accelerated failure time (AFT) model in survival literature. In this article, we address the use and interpretation of linear regression analysis with regard to the competing risks problem. We introduce two types of AFT modeling framework, where the influence of a covariate can be evaluated in relation to either a cause-specific hazard function, referred to as cause-specific AFT (CS-AFT) modeling in this study, or the cumulative incidence function of a particular failure type, referred to as crude-risk AFT (CR-AFT) modeling. Simulation studies illustrate that, as in hazard-based competing risks analysis, these two models can produce substantially different effects, depending on the relationship between the covariates and both the failure type of principal interest and competing failure types. We apply the AFT methods to data from non-Hodgkin lymphoma patients, where the dataset is characterized by two competing events, disease relapse and death without relapse, and non-proportionality. We demonstrate how the data can be analyzed and interpreted, using linear competing risks regression models.  相似文献   

4.
In clinical trials with a time-to-event endpoint, subjects are often at risk for events other than the one of interest. When the occurrence of one type of event precludes observation of any later events or alters the probably of subsequent events, the situation is one of competing risks. During the planning stage of a clinical trial with competing risks, it is important to take all possible events into account. This paper gives expressions for the power and sample size for competing risks based on a flexible parametric Weibull model. Nonuniform accrual to the study is considered and an allocation ratio other than one may be used. Results are also provided for the case where two or more of the competing risks are of primary interest.  相似文献   

5.
We consider a life testing situation in which systems are subject to failure from independent competing risks. Following a failure, immediate (stage-1) procedures are used in an attempt to reach a definitive diagnosis. If these procedures fail to result in a diagnosis, this phenomenon is called masking. Stage-2 procedures, such as failure analysis or autopsy, provide definitive diagnosis for a sample of the masked cases. We show how stage-1 and stage-2 information can be combined to provide statistical inference about (a) survival functions of the individual risks, (b) the proportions of failures associated with individual risks and (c) probability, for a specified masked case, that each of the masked competing risks is responsible for the failure. Our development is based on parametric distributional assumptions and the special case for which the failure times for the competing risks have a Weibull distribution is discussed in detail.  相似文献   

6.

We study models for recurrent events with special emphasis on the situation where a terminal event acts as a competing risk for the recurrent events process and where there may be gaps between periods during which subjects are at risk for the recurrent event. We focus on marginal analysis of the expected number of events and show that an Aalen–Johansen type estimator proposed by Cook and Lawless is applicable in this situation. A motivating example deals with psychiatric hospital admissions where we supplement with analyses of the marginal distribution of time to the competing event and the marginal distribution of the time spent in hospital. Pseudo-observations are used for the latter purpose.

  相似文献   

7.
In medical studies, there is interest in inferring the marginal distribution of a survival time subject to competing risks. The Kyushu Lipid Intervention Study (KLIS) was a clinical study for hypercholesterolemia, where pravastatin treatment was compared with conventional treatment. The primary endpoint was time to events of coronary heart disease (CHD). In this study, however, some subjects died from causes other than CHD or were censored due to loss to follow-up. Because the treatments were targeted to reduce CHD events, the investigators were interested in the effect of the treatment on CHD events in the absence of causes of death or events other than CHD. In this paper, we present a method for estimating treatment group-specific marginal survival curves of time-to-event data in the presence of dependent competing risks. The proposed method is a straightforward extension of the Inverse Probability of Censoring Weighted (IPCW) method to settings with more than one reason for censoring. The results of our analysis showed that the IPCW marginal incidence for CHD was almost the same as the lower bound for which subjects with competing events were assumed to be censored at the end of all follow-up. This result provided reassurance that the results in KLIS were robust to competing risks.  相似文献   

8.
A method based on pseudo-observations has been proposed for direct regression modeling of functionals of interest with right-censored data, including the survival function, the restricted mean and the cumulative incidence function in competing risks. The models, once the pseudo-observations have been computed, can be fitted using standard generalized estimating equation software. Regression models can however yield problematic results if the number of covariates is large in relation to the number of events observed. Guidelines of events per variable are often used in practice. These rules of thumb for the number of events per variable have primarily been established based on simulation studies for the logistic regression model and Cox regression model. In this paper we conduct a simulation study to examine the small sample behavior of the pseudo-observation method to estimate risk differences and relative risks for right-censored data. We investigate how coverage probabilities and relative bias of the pseudo-observation estimator interact with sample size, number of variables and average number of events per variable.  相似文献   

9.
Summary. We prove identification of dependent competing risks models in which each risk has a mixed proportional hazard specification with regressors, and the risks are dependent by way of the unobserved heterogeneity, or frailty, components. We show that the conditions for identification given by Heckman and Honoré can be relaxed. We extend the results to the case in which multiple spells are observed for each subject.  相似文献   

10.

In this paper, we extend the vertical modeling approach for the analysis of survival data with competing risks to incorporate a cure fraction in the population, that is, a proportion of the population for which none of the competing events can occur. The proposed method has three components: the proportion of cure, the risk of failure, irrespective of the cause, and the relative risk of a certain cause of failure, given a failure occurred. Covariates may affect each of these components. An appealing aspect of the method is that it is a natural extension to competing risks of the semi-parametric mixture cure model in ordinary survival analysis; thus, causes of failure are assigned only if a failure occurs. This contrasts with the existing mixture cure model for competing risks of Larson and Dinse, which conditions at the onset on the future status presumably attained. Regression parameter estimates are obtained using an EM-algorithm. The performance of the estimators is evaluated in a simulation study. The method is illustrated using a melanoma cancer data set.

  相似文献   

11.
There has been considerable interest in studying the magnitude and type of inheritance of specific diseases. This is typically derived from family or twin studies, where the basic idea is to compare the correlation for different pairs that share different amount of genes. We here consider data from the Danish twin registry and discuss how to define heritability for cancer occurrence. The key point is that this should be done taking censoring as well as competing risks due to e.g.  death into account. We describe the dependence between twins on the probability scale and show that various models can be used to achieve sensible estimates of the dependence within monozygotic and dizygotic twin pairs that may vary over time. These dependence measures can subsequently be decomposed into a genetic and environmental component using random effects models. We here present several novel models that in essence describe the association in terms of the concordance probability, i.e., the probability that both twins experience the event, in the competing risks setting. We also discuss how to deal with the left truncation present in the Nordic twin registries, due to sampling only of twin pairs where both twins are alive at the initiation of the registries.  相似文献   

12.
A model to accommodate time-to-event ordinal outcomes was proposed by Berridge and Whitehead. Very few studies have adopted this approach, despite its appeal in incorporating several ordered categories of event outcome. More recently, there has been increased interest in utilizing recurrent events to analyze practical endpoints in the study of disease history and to help quantify the changing pattern of disease over time. For example, in studies of heart failure, the analysis of a single fatal event no longer provides sufficient clinical information to manage the disease. Similarly, the grade/frequency/severity of adverse events may be more important than simply prolonged survival in studies of toxic therapies in oncology. We propose an extension of the ordinal time-to-event model to allow for multiple/recurrent events in the case of marginal models (where all subjects are at risk for each recurrence, irrespective of whether they have experienced previous recurrences) and conditional models (subjects are at risk of a recurrence only if they have experienced a previous recurrence). These models rely on marginal and conditional estimates of the instantaneous baseline hazard and provide estimates of the probabilities of an event of each severity for each recurrence over time. We outline how confidence intervals for these probabilities can be constructed and illustrate how to fit these models and provide examples of the methods, together with an interpretation of the results.  相似文献   

13.
Shi  Yushu  Laud  Purushottam  Neuner  Joan 《Lifetime data analysis》2021,27(1):156-176

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

  相似文献   

14.
Estimation of person-specific risk for adverse health events in medicine has been approached almost exclusively using parametric statistical methods. Random forest is a machine learning method based on tree ensembles that is completely nonparametric and for this reason may be better suited for risk prediction. An introduction to a random forest is provided with a focus on its application to risk prediction. Using data from a total joint replacement registry, we illustrate risk prediction for the binary outcome of 90-day mortality following implantation, as well as time to device failure for aseptic reasons with the competing risk of mortality. Using the methods described in this paper, the random forest could be applied to risk prediction in a wide variety of medical fields. Issues related to implementation are discussed.  相似文献   

15.
Prognostic studies are essential to understand the role of particular prognostic factors and, thus, improve prognosis. In most studies, disease progression trajectories of individual patients may end up with one of mutually exclusive endpoints or can involve a sequence of different events.

One challenge in such studies concerns separating the effects of putative prognostic factors on these different endpoints and testing the differences between these effects.

In this article, we systematically evaluate and compare, through simulations, the performance of three alternative multivariable regression approaches in analyzing competing risks and multiple-event longitudinal data. The three approaches are: (1) fitting separate event-specific Cox's proportional hazards models; (2) the extension of Cox's model to competing risks proposed by Lunn and McNeil; and (3) Markov multi-state model.

The simulation design is based on a prognostic study of cancer progression, and several simulated scenarios help investigate different methodological issues relevant to the modeling of multiple-event processes of disease progression. The results highlight some practically important issues. Specifically, the decreased precision of the observed timing of intermediary (non fatal) events has a strong negative impact on the accuracy of regression coefficients estimated with either the Cox's or Lunn-McNeil models, while the Markov model appears to be quite robust, under the same circumstances. Furthermore, the tests based on both Markov and Lunn-McNeil models had similar power for detecting a difference between the effects of the same covariate on the hazards of two mutually exclusive events. The Markov approach yields also accurate Type I error rate and good empirical power for testing the hypothesis that the effect of a prognostic factor on changes after an intermediary event, which cannot be directly tested with the Lunn-McNeil method. Bootstrap-based standard errors improve the coverage rates for Markov model estimates. Overall, the results of our simulations validate Markov multi-state model for a wide range of data structures encountered in prognostic studies of disease progression, and may guide end users regarding the choice of model(s) most appropriate for their specific application.  相似文献   

16.
The model of independent competing risks provides no information for the assessment of competing failure modes if the failure mechanisms underlying these modes are coupled. Models for dependent competing risks in the literature can be distinguished on the basis of the functional behaviour of the conditional probability of failure due to a particular failure mode given that the failure time exceeds a fixed time, as a function of time. There is an interesting link between monotonicity of such conditional probability and dependence between failure time and failure mode, via crude hazard rates. In this paper, we propose tests for testing the dependence between failure time and failure mode using the crude hazards and using the conditional probabilities mentioned above. We establish the equivalence between the two approaches and provide an asymptotically efficient weight function under a sequence of local alternatives. The tests are applied to simulated data and to mortality follow-up data.  相似文献   

17.
In the analysis of competing risks data, cumulative incidence function is a useful summary of the overall crude risk for a failure type of interest. Mixture regression modeling has served as a natural approach to performing covariate analysis based on this quantity. However, existing mixture regression methods with competing risks data either impose parametric assumptions on the conditional risks or require stringent censoring assumptions. In this article, we propose a new semiparametric regression approach for competing risks data under the usual conditional independent censoring mechanism. We establish the consistency and asymptotic normality of the resulting estimators. A simple resampling method is proposed to approximate the distribution of the estimated parameters and that of the predicted cumulative incidence functions. Simulation studies and an analysis of a breast cancer dataset demonstrate that our method performs well with realistic sample sizes and is appropriate for practical use.  相似文献   

18.
竞争风险下我国住房抵押贷款风险的实证研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 本文利用我国住房抵押贷款持续期数据,对贷款终止的提前还款和违约这两种情形展开研究,估计了竞争风险下Cox比例危险模型,刻画我国住房抵押贷款的两类风险概率随协变量变化的时间效应。对竞争风险下的Cox比例危险模型,本文计算了相应的Cox-Snell残差和Deviance残差用于模型的拟合检验,检验表明本文估计的竞争风险模型用于抵押贷款持续期数据的分析是合适的。本文进一步讨论了基于持续期的贷款终止风险研究在银行抵押贷款证券化和信贷风险管理中的意义。  相似文献   

19.
A popular model for competing risks postulates the existence of a latent unobserved failure time for each risk. Assuming that these underlying failure times are independent is attractive since it allows standard statistical tools for right-censored lifetime data to be used in the analysis. This paper proposes simple independence score tests for the validity of this assumption when the individual risks are modeled using semiparametric proportional hazards regressions. It assumes that covariates are available, making the model identifiable. The score tests are derived for alternatives that specify that copulas are responsible for a possible dependency between the competing risks. The test statistics are constructed by adding to the partial likelihoods for the individual risks an explanatory variable for the dependency between the risks. A variance estimator is derived by writing the score function and the Fisher information matrix for the marginal models as stochastic integrals. Pitman efficiencies are used to compare test statistics. A simulation study and a numerical example illustrate the methodology proposed in this paper.  相似文献   

20.
Identification of influential genes and clinical covariates on the survival of patients is crucial because it can lead us to better understanding of underlying mechanism of diseases and better prediction models. Most of variable selection methods in penalized Cox models cannot deal properly with categorical variables such as gender and family history. The group lasso penalty can combine clinical and genomic covariates effectively. In this article, we introduce an optimization algorithm for Cox regression with group lasso penalty. We compare our method with other methods on simulated and real microarray data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号