首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This study evaluates the dose-response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose-response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 microg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five-year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg-day)-1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure-related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg-yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 microg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).  相似文献   

2.
The extensive data from the Blair et al.((1)) epidemiology study of occupational acrylonitrile exposure among 25460 workers in eight plants in the United States provide an excellent opportunity to update quantitative risk assessments for this widely used commodity chemical. We employ the semiparametric Cox relative risk (RR) regression model with a cumulative exposure metric to model cause-specific mortality from lung cancer and all other causes. The separately estimated cause-specific cumulative hazards are then combined to provide an overall estimate of age-specific mortality risk. Age-specific estimates of the additional risk of lung cancer mortality associated with several plausible occupational exposure scenarios are obtained. For age 70, these estimates are all markedly lower than those generated with the cancer potency estimate provided in the USEPA acrylonitrile risk assessment.((2)) This result is consistent with the failure of recent occupational studies to confirm elevated lung cancer mortality among acrylonitrile-exposed workers as was originally reported by O'Berg,((3)) and it calls attention to the importance of using high-quality epidemiology data in the risk assessment process.  相似文献   

3.
Recent studies demonstrating a concentration dependence of elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suggest that previous estimates of exposure for occupationally exposed cohorts may have underestimated actual exposure, resulting in a potential overestimate of the carcinogenic potency of TCDD in humans based on the mortality data for these cohorts. Using a database on U.S. chemical manufacturing workers potentially exposed to TCDD compiled by the National Institute for Occupational Safety and Health (NIOSH), we evaluated the impact of using a concentration- and age-dependent elimination model (CADM) (Aylward et al., 2005) on estimates of serum lipid area under the curve (AUC) for the NIOSH cohort. These data were used previously by Steenland et al. (2001) in combination with a first-order elimination model with an 8.7-year half-life to estimate cumulative serum lipid concentration (equivalent to AUC) for these workers for use in cancer dose-response assessment. Serum lipid TCDD measurements taken in 1988 for a subset of the cohort were combined with the NIOSH job exposure matrix and work histories to estimate dose rates per unit of exposure score. We evaluated the effect of choices in regression model (regression on untransformed vs. ln-transformed data and inclusion of a nonzero regression intercept) as well as the impact of choices of elimination models and parameters on estimated AUCs for the cohort. Central estimates for dose rate parameters derived from the serum-sampled subcohort were applied with the elimination models to time-specific exposure scores for the entire cohort to generate AUC estimates for all cohort members. Use of the CADM resulted in improved model fits to the serum sampling data compared to the first-order models. Dose rates varied by a factor of 50 among different combinations of elimination model, parameter sets, and regression models. Use of a CADM results in increases of up to five-fold in AUC estimates for the more highly exposed members of the cohort compared to estimates obtained using the first-order model with 8.7-year half-life. This degree of variation in the AUC estimates for this cohort would affect substantially the cancer potency estimates derived from the mortality data from this cohort. Such variability and uncertainty in the reconstructed serum lipid AUC estimates for this cohort, depending on elimination model, parameter set, and regression model, have not been described previously and are critical components in evaluating the dose-response data from the occupationally exposed populations.  相似文献   

4.
The purpose of this investigation was to estimate excess lifetime risk of lung cancer death resulting from occupational exposure to hexavalent-chromium-containing dusts and mists. The mortality experience in a previously studied cohort of 2,357 chromate chemical production workers with 122 lung cancer deaths was analyzed with Poisson regression methods. Extensive records of air samples evaluated for water-soluble total hexavalent chromium were available for the entire employment history of this cohort. Six different models of exposure-response for hexavalent chromium were evaluated by comparing deviances and inspection of cubic splines. Smoking (pack-years) imputed from cigarette use at hire was included in the model. Lifetime risks of lung cancer death from exposure to hexavalent chromium (assuming up to 45 years of exposure) were estimated using an actuarial calculation that accounts for competing causes of death. A linear relative rate model gave a good and readily interpretable fit to the data. The estimated rate ratio for 1 mg/m3-yr of cumulative exposure to hexavalent chromium (as CrO3), with a lag of five years, was RR=2.44 (95% CI=1.54-3.83). The excess lifetime risk of lung cancer death from exposure to hexavalent chromium at the current OSHA permissible exposure limit (PEL) (0.10 mg/m3) was estimated to be 255 per 1,000 (95% CI: 109-416). This estimate is comparable to previous estimates by U.S. EPA, California EPA, and OSHA using different occupational data. Our analysis predicts that current occupational standards for hexavalent chromium permit a lifetime excess risk of dying of lung cancer that exceeds 1 in 10, which is consistent with previous risk assessments.  相似文献   

5.
Vinyl chloride (VC) was used as a propellant in a limited percentage of aerosol hairspray products in the United States from approximately 1967 to 1973. The question has arisen whether occupational exposures of hairdressers to VC-containing hairsprays in hair salons were sufficient to increase the risk for developing hepatic angiosarcoma (HAS). Transient two-zone and steady-state three-zone models were used to estimate the historical airborne concentration of VC for individual hairdressers using hairspray as well as estimated contributions from other hairdressers in the same salon. Concentrations of VC were modeled for small, medium, and large salons, as well as a representative home salon. Model inputs were determined using published literature, and variability in these inputs was also considered using Monte Carlo techniques. The 95th percentile for the daily time-weighted average exposure for small, medium, and large salons, assuming a market-share fraction of VC-containing hairspray use from the Monte Carlo analysis, was about 0.3 ppm, and for the home salon scenario was 0.1 ppm. The 95th percentile value for the cumulative lifetime exposure of the hairdressers was 2.8 ppm-years for the home salon scenario and 2.0 ppm-years for the small, medium, and large salon scenarios. If using the assumption that all hairsprays used in a salon contained VC, the 95th percentile of the theoretical lifetime cumulative dose was estimated to be 52–79 ppm-years. Estimated lifetime doses were all below the threshold dose for HAS of about 300 to 500 ppm-years reported in the published epidemiology literature.  相似文献   

6.
A California Environmental Protection Agency (Cal/EPA) report concluded that a reasonable and likely explanation for the increased lung cancer rates in numerous epidemiological studies is a causal association between diesel exhaust exposure and lung cancer. A version of the present analysis, based on a retrospective study of a U.S. railroad worker cohort, provided the Cal/EPA report with some of its estimates of lung cancer risk associated with diesel exhaust. The individual data for that cohort study furnish information on age, employment, and mortality for 56,000 workers over 22 years. Related studies provide information on exposure concentrations. Other analyses of the original cohort data reported finding no relation between measures of diesel exhaust and lung cancer mortality, while a Health Effects Institute report found the data unsuitable for quantitative risk assessment. None of those three works used multistage models, which this article uses in finding a likely quantitative, positive relations between lung cancer and diesel exhaust. A seven-stage model that has the last or next-to-last stage sensitive to diesel exhaust provides best estimates of increase in annual mortality rate due to each unit of concentration, for bracketing assumptions on exposure. Using relative increases of risk and multiplying by the background lung cancer mortality rates for California, the 95% upper confidence limit of the 70-year unit risks for lung cancer is estimated to be in the range 2.1 x 10(-4) (microg/m3)(-1) to 5.5 x 10(-4) (microg/m3)(-1). These risks constitute the low end of those in the Cal/EPA report and are below those reported by previous investigators whose estimates were positive using human data.  相似文献   

7.
We reanalyzed the Libby vermiculite miners’ cohort assembled by Sullivan to estimate potency factors for lung cancer, mesothelioma, nonmalignant respiratory disease (NMRD), and all‐cause mortality associated with exposure to Libby fibers. Our principal statistical tool for analyses of lung cancer, NMRD, and total mortality in the cohort was the time‐dependent proportional hazards model. For mesothelioma, we used an extension of the Peto formula. For a cumulative exposure to Libby fiber of 100 f/mL‐yr, our estimates of relative risk (RR) are as follows: lung cancer, RR = 1.12, 95% confidence interval (CI) =[1.06, 1.17]; NMRD, RR = 1.14, 95% CI =[1.09, 1.18]; total mortality, RR = 1.06, 95% CI =[1.04, 1.08]. These estimates were virtually identical when analyses were restricted to the subcohort of workers who were employed for at least one year. For mesothelioma, our estimate of potency is KM = 0.5 × 10?8, 95% CI =[0.3 × 10?8, 0.8 × 10?8]. Finally, we estimated the mortality ratios standardized against the U.S. population for lung cancer, NMRD, and total mortality and obtained estimates that were in good agreement with those reported by Sullivan. The estimated potency factors form the basis for a quantitative risk assessment at Libby.  相似文献   

8.
Carbon tetrachloride is a degreasing agent that was used at the Rocky Flats Plant (RFP) in Colorado to clean product components and equipment. The chemical is considered a volatile organic compound and a probable human carcinogen. During the time the plant operated (1953-1989), most of the carbon tetrachloride was released to the atmosphere through building exhaust ducts. A smaller amount was released to the air via evaporation from open-air burn pits and ground-surface discharge points. Airborne releases from the plant were conservatively estimated to be equivalent to the amount of carbon tetrachloride consumed annually by the plant, which was estimated to be between 3.6 and 180 Mg per year. This assumption was supported by calculations that showed that most of the carbon tetrachloride discharged to the ground surface would subsequently be released to the atmosphere. Atmospheric transport of carbon tetrachloride from the plant to the surrounding community was estimated using a Gaussian Puff dispersion model (RATCHET). Time-integrated concentrations were estimated for nine hypothetical but realistic exposure scenarios that considered variation in lifestyle, location, age, and gender. Uncertainty distributions were developed for cancer slope factors and atmospheric dispersion factors. These uncertainties were propagated through to the final risk estimate using Monte Carlo techniques. The geometric mean risk estimates varied from 5.2 x 10(-6) for a hypothetical rancher or laborer working near the RFP to 3.4 x 10(-9) for an infant scenario. The distribution of incremental lifetime cancer incidence risk for the hypothetical rancher was between 1.3 x 10(-6) (5% value) and 2.1 x 10(-5) (95% value). These estimates are similar to or exceed estimated cancer risks posed by releases of radionuclides from the site.  相似文献   

9.
Estimates of the lifetime-absorbed daily dose (LADD) of acrylamide resulting from use of representative personal-care products containing polyacrylamides have been developed. All of the parameters that determine the amount of acrylamide absorbed by an individual vary from one individual to another. Moreover, for some parameters there is uncertainty as to which is the correct or representative value from a range of values. Consequently, the parameters used in the estimation of the LADD of acrylamide from usage of a particular product type (e.g., deodorant, makeup, etc.) were represented by distributions evaluated using Monte Carlo analyses.((1-4)) From these data, distributions of values for key parameters, such as the amount of acrylamide in polyacrylamide, absorption fraction, etc., were defined and used to provide a distribution of LADDs for each personal-care product. The estimated total acrylamide LADD (across all products) for males and females at the median, mean, and 95th percentile of the distribution of individual LADD values were 4.7 x 10(-8), 2.3 x 10(-7), and 7.3 x 10(-7) mg/kg/day for females and 3.6 x 10(-8), 1.7 x 10(-7), and 5.4 x 10(-7) mg/kg/day for males. The ratio of the LADDs to risk-specific dose corresponding to a target risk level of 1 x 10(-5), the acceptable risk level for this investigation, derived using approaches typically used by the FDA, the USEPA, and proposed for use by the European Union (EU) were also calculated. All ratios were well below 1, indicating that all the extra lifetime cancer risk from the use of polyacrylamide-containing personal-care products, in the manner assumed in this assessment, are well below acceptable levels. Even if it were assumed that an individual used all of the products together, the estimated LADD would still provide a dose that was well below the acceptable risk levels.  相似文献   

10.
Questions persist regarding assessment of workers’ exposures to products containing low levels of benzene, such as mineral spirit solvent (MSS). This study summarizes previously unpublished data for parts‐washing activities, and evaluates potential daily and lifetime cumulative benzene exposures incurred by workers who used historical and current formulations of a recycled mineral spirits solvent in manual parts washers. Measured benzene concentrations in historical samples from parts‐washing operations were frequently below analytical detection limits. To better assess benzene exposure among these workers, air‐to‐solvent concentration ratios measured for toluene, ethylbenzene, and xylenes (TEX) were used to predict those for benzene based on a statistical model, conditional on physical‐chemical theory supported by new thermodynamic calculations of TEX and benzene activity coefficients in a modeled MSS‐type solvent. Using probabilistic methods, the distributions of benzene concentrations were then combined with distributions of other exposure parameters to estimate eight‐hour time‐weighted average (TWA) exposure concentration distributions and corresponding daily respiratory dose distributions for workers using these solvents in parts washers. The estimated 50th (95th) percentile of the daily respiratory dose and corresponding eight‐hour TWA air concentration for workers performing parts washing are 0.079 (0.77) mg and 0.0030 (0.028) parts per million by volume (ppm) for historical solvent, and 0.020 (0.20) mg and 0.00078 (0.0075) ppm for current solvent, respectively. Both 95th percentile eight‐hour TWA respiratory exposure estimates for solvent formulations are less than 10% of the current Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm for benzene.  相似文献   

11.
Upperbound lifetime excess cancer risks were calculated for activities associated with asbestos abatement using a risk assessment framework developed for EPA's Superfund program. It was found that removals were associated with cancer risks to workers which were often greater than the commonly accepted cancer risk of 1 x 10(-6), although lower than occupational exposure limits associated with risks of 1 x 10(-3). Removals had little effect in reducing risk to school populations. Risks to teachers and students in school buildings containing asbestos were approximately the same as risks associated with exposure to ambient asbestos by the general public and were below the levels typically of concern to regulatory agencies. During abatement, however, there were increased risks to both workers and nearby individuals. Careless, everyday building maintenance generated the greatest risk to workers followed by removals and encapsulation. If asbestos abatement was judged by the risk criteria applied to EPA's Superfund program, the no-action alternative would likely be selected in preference to removal in a majority of cases. These conclusions should only be interpreted within the context of an overall asbestos risk management program, which includes consideration of specific fiber types and sizes, sampling and analytical limitations, physical condition of asbestos-containing material, episodic peak exposures, and the number of people potentially exposed.  相似文献   

12.
This paper estimates the number of workers in the United States who were occupationally exposed to asbestos during and after World War II and assesses the impact of this exposure on overall cancer mortality. The results suggest that over half of the estimated 7–8 million potentially exposed workers employed between 1940 and 1970 may still be alive and at risk of dying from some form of asbestos-related cancer. While the maximum number of excess cancer deaths associated with this occupational exposure is likely to occur sometime in this decade, such deaths will continue to be seen for many years thereafter. At their peak, these deaths may account for an estimated 3% of the annual cancer death toll, with an associated range of 1.4–4.4%.  相似文献   

13.
A study of the prevalence of skin cancer among 40,421 persons consuming arsenic-contaminated drinking water in Taiwan was used for a cancer dose-response assessment of ingested arsenic. The numbers of persons at risk over three dose intervals and four exposure durations were estimated from the data in order to apply the method of maximum likelihood to a multistage-Weibull time/dose-response model. A constant exposure level since birth for each of the exposure categories was assumed. It was found that the cumulative hazard increases as a power of three in age, and is linear or quadratic (with a linear coefficient) in dose. Observations from a smaller epidemiologic survey in Mexico were similar to what would be predicted from the model of the Taiwan data. Assuming that the skin cancer risk from ingested arsenic in the American population would also be similar to the Taiwan population, an American male would have a lifetime risk of developing skin cancer of 1.3 x 10(-3) (3.0 x 10(-3] if exposed to 1 microgram/kg/day for a 76-year lifespan (median lifespan in the U.S.).  相似文献   

14.
Several major epidemiological studies have reported significant mortality rates (SMRs) for both rare cancers (soft tissue sarcoma, non-Hodgkin's, lymphoma, liver) and the more common cancers (lung, colon, etc), all allegedly caused by TCDD. In this paper, we use the potency of TCDD in animals to establish a plausible worst case cancer risk and ask whether its likely that TCDD is responsible for the epidemiological findings assuming the animal carcinogenic potency is applicable to the conditions of human exposure. Two new features of the technique are the use of measured TCDD blood levels in both animals and humans for dose scale-up and the calculation of an integrated life-time exposure for the exposed workers using measured blood levels. On the basis of the stated assumptions it appears unlikely that any of the major epidemiological studies, with the possible exception of the NIOSH study(1)have adequate power to detect the common cancers potentially caused by TCDD.  相似文献   

15.
To develop a quantitative exposure‐response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC‐associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure‐response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA.  相似文献   

16.
The Texas Commission on Environmental Quality (TCEQ) has developed an inhalation unit risk factor (URF) for 1,3-butadiene based on leukemia mortality in an updated epidemiological study on styrene-butadiene rubber production workers conducted by researchers at the University of Alabama at Birmingham. Exposure estimates were updated and an exposure estimate validation study as well as dose-response modeling were conducted by these researchers. This information was not available to the U.S. Environmental Protection Agency when it prepared its health assessment of 1,3-butadiene in 2002. An extensive analysis conducted by TCEQ discusses dose-response modeling, estimating risk for the general population from occupational workers, estimating risk for potentially sensitive subpopulations, effect of occupational exposure estimation error, and use of mortality rates to predict incidence. The URF is 5.0 × 10−7 per μg/m3 or 1.1 × 10−6 per ppb and is based on a Cox regression dose-response model using restricted continuous data with age as a covariate, and a linear low-dose extrapolation default approach using the 95% lower confidence limit as the point of departure. Age-dependent adjustment factors were applied to account for possible increased susceptibility for early life exposure. The air concentration at 1 in 100,000 excess leukemia mortality, the no-significant-risk level, is 20 μg/m3 (9.1 ppb), which is slightly lower than the TCEQ chronic reference value of 33 μg/m3 (15 ppb) protective of ovarian atrophy. These values will be used to evaluate ambient air monitoring data so the general public is protected against adverse health effects from chronic exposure to 1,3-butadiene.  相似文献   

17.
Over time, concerns have been raised regarding the potential for human exposure and risk from asbestos in cosmetic‐talc–containing consumer products. In 1985, the U.S. Food and Drug Administration (FDA) conducted a risk assessment evaluating the potential inhalation asbestos exposure associated with the cosmetic talc consumer use scenario of powdering an infant during diapering, and found that risks were below levels associated with background asbestos exposures and risk. However, given the scope and age of the FDA's assessment, it was unknown whether the agency's conclusions remained relevant to current risk assessment practices, talc application scenarios, and exposure data. This analysis updates the previous FDA assessment by incorporating the current published exposure literature associated with consumer use of talcum powder and using the current U.S. Environmental Protection Agency's (EPA) nonoccupational asbestos risk assessment approach to estimate potential cumulative asbestos exposure and risk for four use scenarios: (1) infant exposure during diapering; (2) adult exposure from infant diapering; (3) adult exposure from face powdering; and (4) adult exposure from body powdering. The estimated range of cumulative asbestos exposure potential for all scenarios (assuming an asbestos content of 0.1%) ranged from 0.0000021 to 0.0096 f/cc‐yr and resulted in risk estimates that were within or below EPA's acceptable target risk levels. Consistent with the original FDA findings, exposure and corresponding health risk in this range were orders of magnitude below upper‐bound estimates of cumulative asbestos exposure and risk at ambient levels, which have not been associated with increased incidence of asbestos‐related disease.  相似文献   

18.
The detailed work histories of the individual workers composing the Pliofilm cohort represent a unique resource for estimating the dose-respoonse for leukemia that may follow occupational exposure to benzene. In this paper, we report the results of analyzing the updated Pliofilm cohort using the proportional hazards model, a more sophisticated technique that uses more of the available exposure data than the conditional logistic model used by Rinsky et al. The more rigorously defined exposure estimates derived by Paustenbach et al. are consistent with those of Crump and Allen in giving estimates of the slope of the leukemogenic dose-response that are not as steep as the slope resulting from the exposure estimates of Rinsky et al. We consider estimates of 0.3-0.5 additional leukemia deaths per thousand workers with 45 ppm-years of cumulative benzene exposure to be the best estimates currently available of leukemia risk from occupational exposure to benzene. These risks were estimated in the proportional hazards model when the exposure estimates of Crump and Allen or of Paustenbach et al. were used to derive a cumulative concentration-by-time metric.  相似文献   

19.
Methylene chloride has been shown to be a lung and liver carcinogen in the mouse; yet, the current epidemiologic data show no adverse health effects associated with chronic exposure to this compound. Hearne et al. have compared the results of a large mortality study on occupational exposure to methylene chloride to the human risk predictions based on the rodent bioassay to point out the inconsistency between the animal toxicologic and human epidemiologic data. The maximum number of lung and liver cancers predicted due to methylene chloride exposure based on the rodent bioassay data was 24 compared to 14 deaths from these cancers actually observed in the Hearne et al. epidemiology study. We assess the minimum risk detectable by the human study in order to calculate the upperbound potency of methylene chloride and compare it to the potency derived from the bioassay data. Results from the epidemiology study imply an upperbound potency of 1.5 x 10(-2) per ppm, compared to 1.4 x 10(-2) per ppm calculated using the most conservative analysis of the animal data. We conclude that the negative epidemiology study of Hearne et al. is not sufficiently powerful to show that the risk is inconsistent with the human risk estimated by modeling the rodent bioassay data. Specifically, the doses to which the workers were exposed, the population studied, and the latency period were not adequate to determine that the risks are outside the bounds of the risk estimates predicted by low-dose modeling of the animal data.  相似文献   

20.
There is considerable debate as to the most appropriate metric for characterizing the mortality impacts of air pollution. Life expectancy has been advocated as an informative measure. Although the life‐table calculus is relatively straightforward, it becomes increasingly cumbersome when repeated over large numbers of geographic areas and for multiple causes of death. Two simplifying assumptions were evaluated: linearity of the relation between excess rate ratio and change in life expectancy, and additivity of cause‐specific life‐table calculations. We employed excess rate ratios linking PM2.5 and mortality from cerebrovascular disease, chronic obstructive pulmonary disease, ischemic heart disease, and lung cancer derived from a meta‐analysis of worldwide cohort studies. As a sensitivity analysis, we employed an integrated exposure response function based on the observed risk of PM2.5 over a wide range of concentrations from ambient exposure, indoor exposure, second‐hand smoke, and personal smoking. Impacts were estimated in relation to a change in PM2.5 from 19.5 μg/m3 estimated for Toronto to an estimated natural background concentration of 1.8 μg/m3. Estimated changes in life expectancy varied linearly with excess rate ratios, but at higher values the relationship was more accurately represented as a nonlinear function. Changes in life expectancy attributed to specific causes of death were additive with maximum error of 10%. Results were sensitive to assumptions about the air pollution concentration below which effects on mortality were not quantified. We have demonstrated valid approximations comprising expression of change in life expectancy as a function of excess mortality and summation across multiple causes of death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号