首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
On Block Ordering of Variables in Graphical Modelling   总被引:1,自引:0,他引:1  
Abstract.  In graphical modelling, the existence of substantive background knowledge on block ordering of variables is used to perform structural learning within the family of chain graphs (CGs) in which every block corresponds to an undirected graph and edges joining vertices in different blocks are directed in accordance with the ordering. We show that this practice may lead to an inappropriate restriction of the search space and introduce the concept of labelled block ordering B corresponding to a family of B - consistent CGs in which every block may be either an undirected graph or a directed acyclic graph or, more generally, a CG. In this way we provide a flexible tool for specifying subsets of chain graphs, and we observe that the most relevant subsets of CGs considered in the literature are families of B -consistent CGs for the appropriate choice of B . Structural learning within a family of B -consistent CGs requires to deal with Markov equivalence. We provide a graphical characterization of equivalence classes of B -consistent CGs, namely the B - essential graphs , as well as a procedure to construct the B -essential graph for any given equivalence class of B -consistent chain graphs. Both largest CGs and essential graphs turn out to be special cases of B -essential graphs.  相似文献   

2.
Abstract.  A Markov property associates a set of conditional independencies to a graph. Two alternative Markov properties are available for chain graphs (CGs), the Lauritzen–Wermuth–Frydenberg (LWF) and the Andersson–Madigan– Perlman (AMP) Markov properties, which are different in general but coincide for the subclass of CGs with no flags . Markov equivalence induces a partition of the class of CGs into equivalence classes and every equivalence class contains a, possibly empty, subclass of CGs with no flags itself containing a, possibly empty, subclass of directed acyclic graphs (DAGs). LWF-Markov equivalence classes of CGs can be naturally characterized by means of the so-called largest CGs , whereas a graphical characterization of equivalence classes of DAGs is provided by the essential graphs . In this paper, we show the existence of largest CGs with no flags that provide a natural characterization of equivalence classes of CGs of this kind, with respect to both the LWF- and the AMP-Markov properties. We propose a procedure for the construction of the largest CGs, the largest CGs with no flags and the essential graphs, thereby providing a unified approach to the problem. As by-products we obtain a characterization of graphs that are largest CGs with no flags and an alternative characterization of graphs which are largest CGs. Furthermore, a known characterization of the essential graphs is shown to be a special case of our more general framework. The three graphical characterizations have a common structure: they use two versions of a locally verifiable graphical rule. Moreover, in case of DAGs, an immediate comparison of three characterizing graphs is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号