首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global optimization of the generalized cross-validation criterion   总被引:6,自引:0,他引:6  
Generalized cross-validation is a method for choosing the smoothing parameter in smoothing splines and related regularization problems. This method requires the global minimization of the generalized cross-validation function. In this paper an algorithm based on interval analysis is presented to find the globally optimal value for the smoothing parameter, and a numerical example illustrates the performance of the algorithm.  相似文献   

2.
Generalized additive models represented using low rank penalized regression splines, estimated by penalized likelihood maximisation and with smoothness selected by generalized cross validation or similar criteria, provide a computationally efficient general framework for practical smooth modelling. Various authors have proposed approximate Bayesian interval estimates for such models, based on extensions of the work of Wahba, G. (1983) [Bayesian confidence intervals for the cross validated smoothing spline. J. R. Statist. Soc. B 45 , 133–150] and Silverman, B.W. (1985) [Some aspects of the spline smoothing approach to nonparametric regression curve fitting. J. R. Statist. Soc. B 47 , 1–52] on smoothing spline models of Gaussian data, but testing of such intervals has been rather limited and there is little supporting theory for the approximations used in the generalized case. This paper aims to improve this situation by providing simulation tests and obtaining asymptotic results supporting the approximations employed for the generalized case. The simulation results suggest that while across‐the‐model performance is good, component‐wise coverage probabilities are not as reliable. Since this is likely to result from the neglect of smoothing parameter variability, a simple and efficient simulation method is proposed to account for smoothing parameter uncertainty: this is demonstrated to substantially improve the performance of component‐wise intervals.  相似文献   

3.
Thin plate regression splines   总被引:2,自引:0,他引:2  
Summary. I discuss the production of low rank smoothers for d  ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thin plate spline smoothing problem and are optimal in the sense that the truncation is designed to result in the minimum possible perturbation of the thin plate spline smoothing problem given the dimension of the basis used to construct the smoother. By making use of Lanczos iteration the basis change and truncation are computationally efficient. The smoothers allow the use of approximate thin plate spline models with large data sets, avoid the problems that are associated with 'knot placement' that usually complicate modelling with regression splines or penalized regression splines, provide a sensible way of modelling interaction terms in generalized additive models, provide low rank approximations to generalized smoothing spline models, appropriate for use with large data sets, provide a means for incorporating smooth functions of more than one variable into non-linear models and improve the computational efficiency of penalized likelihood models incorporating thin plate splines. Given that the approach produces spline-like models with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms in linear and generalized linear models, and these can be treated just like any other model terms from the point of view of model selection, inference and diagnostics.  相似文献   

4.
Summary.  We construct approximate confidence intervals for a nonparametric regression function, using polynomial splines with free-knot locations. The number of knots is determined by generalized cross-validation. The estimates of knot locations and coefficients are obtained through a non-linear least squares solution that corresponds to the maximum likelihood estimate. Confidence intervals are then constructed based on the asymptotic distribution of the maximum likelihood estimator. Average coverage probabilities and the accuracy of the estimate are examined via simulation. This includes comparisons between our method and some existing methods such as smoothing spline and variable knots selection as well as a Bayesian version of the variable knots method. Simulation results indicate that our method works well for smooth underlying functions and also reasonably well for discontinuous functions. It also performs well for fairly small sample sizes.  相似文献   

5.
ABSTRACT

This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.  相似文献   

6.
ON SPLINE SMOOTHING WITH AUTOCORRELATED ERRORS   总被引:1,自引:0,他引:1  
The generalised cross-validation criterion for choosing the degree of smoothing in spline regression is extended to accommodate an autocorrelated error sequence. It is demonstrated via simulation that the minimum generalised cross-validation smoothing spline is an inconsistent estimator in the presence of autocorrelated errors and that ignoring even moderate autocorrelation structure can seriously affect the performance of the cross-validated smoothing spline. The method of penalised maximum likelihood is used to develop an efficient algorithm for the case in which the autocorrelation decays exponentially. An application of the method to a published data-set is described. The method does not require the data to be equally spaced in time.  相似文献   

7.
An exposition on the use of O'Sullivan penalized splines in contemporary semiparametric regression, including mixed model and Bayesian formulations, is presented. O'Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct generalization of smoothing splines. Exact expressions for the O'Sullivan penalty matrix are obtained. Comparisons between the two types of splines reveal that O'Sullivan penalized splines more closely mimic the natural boundary behaviour of smoothing splines. Implementation in modern computing environments such as Matlab , r and bugs is discussed.  相似文献   

8.
Summary.  The objective is to estimate the period and the light curve (or periodic function) of a variable star. Previously, several methods have been proposed to estimate the period of a variable star, but they are inaccurate especially when a data set contains outliers. We use a smoothing spline regression to estimate the light curve given a period and then find the period which minimizes the generalized cross-validation (GCV). The GCV method works well, matching an intensive visual examination of a few hundred stars, but the GCV score is still sensitive to outliers. Handling outliers in an automatic way is important when this method is applied in a 'data mining' context to a vary large star survey. Therefore, we suggest a robust method which minimizes a robust cross-validation criterion induced by a robust smoothing spline regression. Once the period has been determined, a nonparametric method is used to estimate the light curve. A real example and a simulation study suggest that the robust cross-validation and GCV methods are superior to existing methods.  相似文献   

9.
Maximum penalized likelihood estimation is applied in non(semi)-para-metric regression problems, and enables us exploratory identification and diagnostics of nonlinear regression relationships. The smoothing parameter A controls trade-off between the smoothness and the goodness-of-fit of a function. The method of cross-validation is used for selecting A, but the generalized cross-validation, which is based on the squared error criterion, shows bad be¬havior in non-normal distribution and can not often select reasonable A. The purpose of this study is to propose a method which gives more suitable A and to evaluate the performance of it.

A method of simple calculation for the delete-one estimates in the likeli¬hood-based cross-validation (LCV) score is described. A score of similar form to the Akaike information criterion (AIC) is also derived. The proposed scores are compared with the ones of standard procedures by using data sets in liter¬atures. Simulations are performed to compare the patterns of selecting A and overall goodness-of-fit and to evaluate the effects of some factors. The LCV-scores by the simple calculation provide good approximation to the exact one if λ is not extremeiy smaii Furthermore the LCV scores by the simple size it possible to select X adaptively They have the effect, of reducing the bias of estimates and provide better performance in the sense of overall goodness-of fit. These scores are useful especially in the case of small sample size and in the case of binary logistic regression.  相似文献   

10.
Penalized likelihood methods provide a range of practical modelling tools, including spline smoothing, generalized additive models and variants of ridge regression. Selecting the correct weights for penalties is a critical part of using these methods and in the single-penalty case the analyst has several well-founded techniques to choose from. However, many modelling problems suggest a formulation employing multiple penalties, and here general methodology is lacking. A wide family of models with multiple penalties can be fitted to data by iterative solution of the generalized ridge regression problem minimize || W 1/2 ( Xp − y ) ||2ρ+Σ i =1 m  θ i p ' S i p ( p is a parameter vector, X a design matrix, S i a non-negative definite coefficient matrix defining the i th penalty with associated smoothing parameter θ i , W a diagonal weight matrix, y a vector of data or pseudodata and ρ an 'overall' smoothing parameter included for computational efficiency). This paper shows how smoothing parameter selection can be performed efficiently by applying generalized cross-validation to this problem and how this allows non-linear, generalized linear and linear models to be fitted using multiple penalties, substantially increasing the scope of penalized modelling methods. Examples of non-linear modelling, generalized additive modelling and anisotropic smoothing are given.  相似文献   

11.
Summary.  Spline-based approaches to non-parametric and semiparametric regression, as well as to regression of scalar outcomes on functional predictors, entail choosing a parameter controlling the extent to which roughness of the fitted function is penalized. We demonstrate that the equations determining two popular methods for smoothing parameter selection, generalized cross-validation and restricted maximum likelihood, share a similar form that allows us to prove several results which are common to both, and to derive a condition under which they yield identical values. These ideas are illustrated by application of functional principal component regression, a method for regressing scalars on functions, to two chemometric data sets.  相似文献   

12.
Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoothing spline estimators. Each of these estimators uses a smoothing parameter to control the amount of smoothing performed on a given data set. In this paper an improved version of a criterion based on the Akaike information criterion (AIC), termed AICC, is derived and examined as a way to choose the smoothing parameter. Unlike plug-in methods, AICC can be used to choose smoothing parameters for any linear smoother, including local quadratic and smoothing spline estimators. The use of AICC avoids the large variability and tendency to undersmooth (compared with the actual minimizer of average squared error) seen when other 'classical' approaches (such as generalized cross-validation (GCV) or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations demonstrate that the AICC-based smoothing parameter is competitive with a plug-in method (assuming that one exists) when the plug-in method works well but also performs well when the plug-in approach fails or is unavailable.  相似文献   

13.
These Fortran-77 subroutines provide building blocks for Generalized Cross-Validation (GCV) (Craven and Wahba, 1979) calculations in data analysis and data smoothing including ridge regression (Golub, Heath, and Wahba, 1979), thin plate smoothing splines (Wahba and Wendelberger, 1980), deconvolution (Wahba, 1982d), smoothing of generalized linear models (O'sullivan, Yandell and Raynor 1986, Green 1984 and Green and Yandell 1985), and ill-posed problems (Nychka et al., 1984, O'sullivan and Wahba, 1985). We present some of the types of problems for which GCV is a useful method of choosing a smoothing or regularization parameter and we describe the structure of the subroutines.Ridge Regression: A familiar example of a smoothing parameter is the ridge parameter X in the ridge regression problem which we write.  相似文献   

14.
Smoothing of noisy sample covariances is an important component in functional data analysis. We propose a novel covariance smoothing method based on penalized splines and associated software. The proposed method is a bivariate spline smoother that is designed for covariance smoothing and can be used for sparse functional or longitudinal data. We propose a fast algorithm for covariance smoothing using leave-one-subject-out cross-validation. Our simulations show that the proposed method compares favorably against several commonly used methods. The method is applied to a study of child growth led by one of coauthors and to a public dataset of longitudinal CD4 counts.  相似文献   

15.
Robust automatic selection techniques for the smoothing parameter of a smoothing spline are introduced. They are based on a robust predictive error criterion and can be viewed as robust versions of C p and cross-validation. They lead to smoothing splines which are stable and reliable in terms of mean squared error over a large spectrum of model distributions.  相似文献   

16.
针对纵向数据半参数模型E(y|x,t)=XTβ+f(t),采用惩罚二次推断函数方法同时估计模型中的回归参数β和未知光滑函数f(t)。首先利用截断幂函数基对未知光滑函数进行基函数展开近似,然后利用惩罚样条的思想构造关于回归参数和基函数系数的惩罚二次推断函数,最小化惩罚二次推断函数便可得到回归参数和基函数系数的惩罚二次推断函数估计。理论结果显示,估计结果具有相合性和渐近正态性,通过数值方法也得到了较好的模拟结果。  相似文献   

17.
Simulation-based inference for partially observed stochastic dynamic models is currently receiving much attention due to the fact that direct computation of the likelihood is not possible in many practical situations. Iterated filtering methodologies enable maximization of the likelihood function using simulation-based sequential Monte Carlo filters. Doucet et al. (2013) developed an approximation for the first and second derivatives of the log likelihood via simulation-based sequential Monte Carlo smoothing and proved that the approximation has some attractive theoretical properties. We investigated an iterated smoothing algorithm carrying out likelihood maximization using these derivative approximations. Further, we developed a new iterated smoothing algorithm, using a modification of these derivative estimates, for which we establish both theoretical results and effective practical performance. On benchmark computational challenges, this method beat the first-order iterated filtering algorithm. The method’s performance was comparable to a recently developed iterated filtering algorithm based on an iterated Bayes map. Our iterated smoothing algorithm and its theoretical justification provide new directions for future developments in simulation-based inference for latent variable models such as partially observed Markov process models.  相似文献   

18.
Several estimators of squared prediction error have been suggested for use in model and bandwidth selection problems. Among these are cross-validation, generalized cross-validation and a number of related techniques based on the residual sum of squares. For many situations with squared error loss, e.g. nonparametric smoothing, these estimators have been shown to be asymptotically optimal in the sense that in large samples the estimator minimizing the selection criterion also minimizes squared error loss. However, cross-validation is known not to be asymptotically optimal for some `easy' location problems. We consider selection criteria based on estimators of squared prediction risk for choosing between location estimators. We show that criteria based on adjusted residual sum of squares are not asymptotically optimal for choosing between asymptotically normal location estimators that converge at rate n 1/2but are when the rate of convergence is slower. We also show that leave-one-out cross-validation is not asymptotically optimal for choosing between √ n -differentiable statistics but leave- d -out cross-validation is optimal when d ∞ at the appropriate rate.  相似文献   

19.
In this paper we consider the problem of constructing confidence intervals for nonparametric quantile regression with an emphasis on smoothing splines. The mean‐based approaches for smoothing splines of Wahba (1983) and Nychka (1988) may not be efficient for constructing confidence intervals for the underlying function when the observed data are non‐Gaussian distributed, for instance if they are skewed or heavy‐tailed. This paper proposes a method of constructing confidence intervals for the unknown τth quantile function (0<τ<1) based on smoothing splines. In this paper we investigate the extent to which the proposed estimator provides the desired coverage probability. In addition, an improvement based on a local smoothing parameter that provides more uniform pointwise coverage is developed. The results from numerical studies including a simulation study and real data analysis demonstrate the promising empirical properties of the proposed approach.  相似文献   

20.
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows flexible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate nonparametric functions by using smoothing splines and jointly estimate smoothing parameters and variance components by using marginal quasi-likelihood. Because numerical integration is often required by maximizing the objective functions, double penalized quasi-likelihood is proposed to make approximate inference. Frequentist and Bayesian inferences are compared. A key feature of the method proposed is that it allows us to make systematic inference on all model components within a unified parametric mixed model framework and can be easily implemented by fitting a working generalized linear mixed model by using existing statistical software. A bias correction procedure is also proposed to improve the performance of double penalized quasi-likelihood for sparse data. We illustrate the method with an application to infectious disease data and we evaluate its performance through simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号