首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Process regression methodology is underdeveloped relative to the frequency with which pertinent data arise. In this article, the response-190 is a binary indicator process representing the joint event of being alive and remaining in a specific state. The process is indexed by time (e.g., time since diagnosis) and observed continuously. Data of this sort occur frequently in the study of chronic disease. A general area of application involves a recurrent event with non-negligible duration (e.g., hospitalization and associated length of hospital stay) and subject to a terminating event (e.g., death). We propose a semiparametric multiplicative model for the process version of the probability of being alive and in the (transient) state of interest. Under the proposed methods, the regression parameter is estimated through a procedure that does not require estimating the baseline probability. Unlike the majority of process regression methods, the proposed methods accommodate multiple sources of censoring. In particular, we derive a computationally convenient variant of inverse probability of censoring weighting based on the additive hazards model. We show that the regression parameter estimator is asymptotically normal, and that the baseline probability function estimator converges to a Gaussian process. Simulations demonstrate that our estimators have good finite sample performance. We apply our method to national end-stage liver disease data. The Canadian Journal of Statistics 48: 222–237; 2020 © 2019 Statistical Society of Canada  相似文献   

2.
Mean survival time is often of inherent interest in medical and epidemiologic studies. In the presence of censoring and when covariate effects are of interest, Cox regression is the strong default, but mostly due to convenience and familiarity. When survival times are uncensored, covariate effects can be estimated as differences in mean survival through linear regression. Tobit regression can validly be performed through maximum likelihood when the censoring times are fixed (ie, known for each subject, even in cases where the outcome is observed). However, Tobit regression is generally inapplicable when the response is subject to random right censoring. We propose Tobit regression methods based on weighted maximum likelihood which are applicable to survival times subject to both fixed and random censoring times. Under the proposed approach, known right censoring is handled naturally through the Tobit model, with inverse probability of censoring weighting used to overcome random censoring. Essentially, the re‐weighting data are intended to represent those that would have been observed in the absence of random censoring. We develop methods for estimating the Tobit regression parameter, then the population mean survival time. A closed form large‐sample variance estimator is proposed for the regression parameter estimator, with a semiparametric bootstrap standard error estimator derived for the population mean. The proposed methods are easily implementable using standard software. Finite‐sample properties are assessed through simulation. The methods are applied to a large cohort of patients wait‐listed for kidney transplantation.  相似文献   

3.
Summary.  Recurrent events models have had considerable attention recently. The majority of approaches show the consistency of parameter estimates under the assumption that censoring is independent of the recurrent events process of interest conditional on the covariates that are included in the model. We provide an overview of available recurrent events analysis methods and present an inverse probability of censoring weighted estimator for the regression parameters in the Andersen–Gill model that is commonly used for recurrent event analysis. This estimator remains consistent under informative censoring if the censoring mechanism is estimated consistently, and it generally improves on the naïve estimator for the Andersen–Gill model in the case of independent censoring. We illustrate the bias of ad hoc estimators in the presence of informative censoring with a simulation study and provide a data analysis of recurrent lung exacerbations in cystic fibrosis patients when some patients are lost to follow-up.  相似文献   

4.
When observational data are used to compare treatment-specific survivals, regular two-sample tests, such as the log-rank test, need to be adjusted for the imbalance between treatments with respect to baseline covariate distributions. Besides, the standard assumption that survival time and censoring time are conditionally independent given the treatment, required for the regular two-sample tests, may not be realistic in observational studies. Moreover, treatment-specific hazards are often non-proportional, resulting in small power for the log-rank test. In this paper, we propose a set of adjusted weighted log-rank tests and their supremum versions by inverse probability of treatment and censoring weighting to compare treatment-specific survivals based on data from observational studies. These tests are proven to be asymptotically correct. Simulation studies show that with realistic sample sizes and censoring rates, the proposed tests have the desired Type I error probabilities and are more powerful than the adjusted log-rank test when the treatment-specific hazards differ in non-proportional ways. A real data example illustrates the practical utility of the new methods.  相似文献   

5.
Panel count data occur in many fields and a number of approaches have been developed. However, most of these approaches are for situations where there is no terminal event and the observation process is independent of the underlying recurrent event process unconditionally or conditional on the covariates. In this paper, we discuss a more general situation where the observation process is informative and there exists a terminal event which precludes further occurrence of the recurrent events of interest. For the analysis, a semiparametric transformation model is presented for the mean function of the underlying recurrent event process among survivors. To estimate the regression parameters, an estimating equation approach is proposed in which an inverse survival probability weighting technique is used. The asymptotic distribution of the proposed estimates is provided. Simulation studies are conducted and suggest that the proposed approach works well for practical situations. An illustrative example is provided. The Canadian Journal of Statistics 41: 174–191; 2013 © 2012 Statistical Society of Canada  相似文献   

6.
In follow-up studies, survival data often include subjects who have had a certain event at recruitment and may potentially experience a series of subsequent events during the follow-up period. This kind of survival data collected under a cross-sectional sampling criterion is called truncated serial event data. The outcome variables of interest in this paper are serial sojourn times between successive events. To analyze the sojourn times in truncated serial event data, we need to confront two potential sampling biases arising simultaneously from a sampling criterion and induced informative censoring. In this study, nonparametric estimation of the joint probability function of serial sojourn times is developed by using inverse probabilities of the truncation and censoring times as weight functions to accommodate these two sampling biases under various situations of truncation and censoring. Relevant statistical properties of the proposed estimators are also discussed. Simulation studies and two real data are presented to illustrate the proposed methods.  相似文献   

7.
Frequently in clinical and epidemiologic studies, the event of interest is recurrent (i.e., can occur more than once per subject). When the events are not of the same type, an analysis which accounts for the fact that events fall into different categories will often be more informative. Often, however, although event times may always be known, information through which events are categorized may potentially be missing. Complete‐case methods (whose application may require, for example, that events be censored when their category cannot be determined) are valid only when event categories are missing completely at random. This assumption is rather restrictive. The authors propose two multiple imputation methods for analyzing multiple‐category recurrent event data under the proportional means/rates model. The use of a proper or improper imputation technique distinguishes the two approaches. Both methods lead to consistent estimation of regression parameters even when the missingness of event categories depends on covariates. The authors derive the asymptotic properties of the estimators and examine their behaviour in finite samples through simulation. They illustrate their approach using data from an international study on dialysis.  相似文献   

8.
Recurrent event data often arise in biomedical studies, with examples including hospitalizations, infections, and treatment failures. In observational studies, it is often of interest to estimate the effects of covariates on the marginal recurrent event rate. The majority of existing rate regression methods assume multiplicative covariate effects. We propose a semiparametric model for the marginal recurrent event rate, wherein the covariates are assumed to add to the unspecified baseline rate. Covariate effects are summarized by rate differences, meaning that the absolute effect on the rate function can be determined from the regression coefficient alone. We describe modifications of the proposed method to accommodate a terminating event (e.g., death). Proposed estimators of the regression parameters and baseline rate are shown to be consistent and asymptotically Gaussian. Simulation studies demonstrate that the asymptotic approximations are accurate in finite samples. The proposed methods are applied to a state-wide kidney transplant data set.  相似文献   

9.
We propose a mixture model that combines a discrete-time survival model for analyzing the correlated times between recurrent events, e.g. births, with a logistic regression model for the probability of never experiencing the event of interest, i.e., being a long-term survivor. The proposed survival model incorporates both observed and unobserved heterogeneity in the probability of experiencing the event of interest. We use Gibbs sampling for the fitting of such mixture models, which leads to a computationally intensive solution to the problem of fitting survival models for multiple event time data with long-term survivors. We illustrate our Bayesian approach through an analysis of Hutterite birth histories.  相似文献   

10.
Often in observational studies of time to an event, the study population is a biased (i.e., unrepresentative) sample of the target population. In the presence of biased samples, it is common to weight subjects by the inverse of their respective selection probabilities. Pan and Schaubel (Can J Stat 36:111–127, 2008) recently proposed inference procedures for an inverse selection probability weighted (ISPW) Cox model, applicable when selection probabilities are not treated as fixed but estimated empirically. The proposed weighting procedure requires auxiliary data to estimate the weights and is computationally more intense than unweighted estimation. The ignorability of sample selection process in terms of parameter estimators and predictions is often of interest, from several perspectives: e.g., to determine if weighting makes a significant difference to the analysis at hand, which would in turn address whether the collection of auxiliary data is required in future studies; to evaluate previous studies which did not correct for selection bias. In this article, we propose methods to quantify the degree of bias corrected by the weighting procedure in the partial likelihood and Breslow-Aalen estimators. Asymptotic properties of the proposed test statistics are derived. The finite-sample significance level and power are evaluated through simulation. The proposed methods are then applied to data from a national organ failure registry to evaluate the bias in a post-kidney transplant survival model.  相似文献   

11.
When constructing models to summarize clinical data to be used for simulations, it is good practice to evaluate the models for their capacity to reproduce the data. This can be done by means of Visual Predictive Checks (VPC), which consist of several reproductions of the original study by simulation from the model under evaluation, calculating estimates of interest for each simulated study and comparing the distribution of those estimates with the estimate from the original study. This procedure is a generic method that is straightforward to apply, in general. Here we consider the application of the method to time-to-event data and consider the special case when a time-varying covariate is not known or cannot be approximated after event time. In this case, simulations cannot be conducted beyond the end of the follow-up time (event or censoring time) in the original study. Thus, the simulations must be censored at the end of the follow-up time. Since this censoring is not random, the standard KM estimates from the simulated studies and the resulting VPC will be biased. We propose to use inverse probability of censoring weighting (IPoC) method to correct the KM estimator for the simulated studies and obtain unbiased VPCs. For analyzing the Cantos study, the IPoC weighting as described here proved valuable and enabled the generation of VPCs to qualify PKPD models for simulations. Here, we use a generated data set, which allows illustration of the different situations and evaluation against the known truth.  相似文献   

12.

Motivated by a breast cancer research program, this paper is concerned with the joint survivor function of multiple event times when their observations are subject to informative censoring caused by a terminating event. We formulate the correlation of the multiple event times together with the time to the terminating event by an Archimedean copula to account for the informative censoring. Adapting the widely used two-stage procedure under a copula model, we propose an easy-to-implement pseudo-likelihood based procedure for estimating the model parameters. The approach yields a new estimator for the marginal distribution of a single event time with semicompeting-risks data. We conduct both asymptotics and simulation studies to examine the proposed approach in consistency, efficiency, and robustness. Data from the breast cancer program are employed to illustrate this research.

  相似文献   

13.
For right-censored survival data, the information that whether the observed time is survival or censoring time is frequently lost. This is the case for the competing risk data. In this article, we consider statistical inference for the right-censored survival data with censoring indicators missing at random under the proportional mean residual life model. Simple and augmented inverse probability weighted estimating equation approaches are developed, in which the nonmissingness probability and some unknown conditional expectations are estimated by the kernel smoothing technique. The asymptotic properties of all the proposed estimators are established, while extensive simulation studies demonstrate that our proposed methods perform well under the moderate sample size. At last, the proposed method is applied to a data set from a stage II breast cancer trial.  相似文献   

14.
Marginal Means/Rates Models for Multiple Type Recurrent Event Data   总被引:3,自引:0,他引:3  
Recurrent events are frequently observed in biomedical studies, and often more than one type of event is of interest. Follow-up time may be censored due to loss to follow-up or administrative censoring. We propose a class of semi-parametric marginal means/rates models, with a general relative risk form, for assessing the effect of covariates on the censored event processes of interest. We formulate estimating equations for the model parameters, and examine asymptotic properties of the parameter estimators. Finite sample properties of the regression coefficients are examined through simulations. The proposed methods are applied to a retrospective cohort study of risk factors for preschool asthma.  相似文献   

15.
We consider the analysis of spell durations observed in event history studies where members of the study panel are seen intermittently. Challenges for analysis arise because losses to followup are frequently related to previous event history, and spells typically overlap more than one observation period. We provide methods of estimation based on inverse probability of censoring weighting for parametric and semiparametric Cox regression models. Selection of panel members through a complex survey design is also addressed, and the methods are illustrated in an analysis of jobless spell durations based on data from the Statistics Canada Survey of Labour and Income Dynamics. The Canadian Journal of Statistics 40: 1–21; 2012 © 2012 Statistical Society of Canada  相似文献   

16.
The recurrent-event setting, where the subjects experience multiple occurrences of the event of interest, are encountered in many biomedical applications. In analyzing recurrent event data, non informative censoring is often assumed for the implementation of statistical methods. However, when a terminating event such as death serves as part of the censoring mechanism, validity of the censoring assumption may be violated because recurrence can be a powerful risk factor for death. We consider joint modeling of recurrent event process and terminating event under a Bayesian framework in which a shared frailty is used to model the association between the intensity of the recurrent event process and the hazard of the terminating event. Our proposed model is implemented on data from a well-known cancer study.  相似文献   

17.
18.
Variable screening for censored survival data is most challenging when both survival and censoring times are correlated with an ultrahigh-dimensional vector of covariates. Existing approaches to handling censoring often make use of inverse probability weighting by assuming independent censoring with both survival time and covariates. This is a convenient but rather restrictive assumption which may be unmet in real applications, especially when the censoring mechanism is complex and the number of covariates is large. To accommodate heterogeneous (covariate-dependent) censoring that is often present in high-dimensional survival data, we propose a Gehan-type rank screening method to select features that are relevant to the survival time. The method is invariant to monotone transformations of the response and of the predictors, and works robustly for a general class of survival models. We establish the sure screening property of the proposed methodology. Simulation studies and a lymphoma data analysis demonstrate its favorable performance and practical utility.  相似文献   

19.
Clinical trials often assess whether or not subjects have a disease at predetermined follow-up times. When the response of interest is a recurrent event, a subject may respond at multiple follow-up times over the course of the study. Alternatively, when the response of interest is an irreversible event, a subject is typically only observed until the time at which the response is first detected. However, some recent studies have recorded subjects responses at follow-up times after an irreversible event is initially observed. This study compares how existing models perform when failure time data are treated as recurrent events.  相似文献   

20.
Recurrent event data occur in many clinical and observational studies (Cook and Lawless, Analysis of recurrent event data, 2007) and in these situations, there may exist a terminal event such as death that is related to the recurrent event of interest (Ghosh and Lin, Biometrics 56:554–562, 2000; Wang et al., J Am Stat Assoc 96:1057–1065, 2001; Huang and Wang, J Am Stat Assoc 99:1153–1165, 2004; Ye et al., Biometrics 63:78–87, 2007). In addition, sometimes there may exist more than one type of recurrent events, that is, one faces multivariate recurrent event data with some dependent terminal event (Chen and Cook, Biostatistics 5:129–143, 2004). It is apparent that for the analysis of such data, one has to take into account the dependence both among different types of recurrent events and between the recurrent and terminal events. In this paper, we propose a joint modeling approach for regression analysis of the data and both finite and asymptotic properties of the resulting estimates of unknown parameters are established. The methodology is applied to a set of bivariate recurrent event data arising from a study of leukemia patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号