首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Increased urban development, including an increase in impervious surfaces has the potential to alter the biogeochemistry of surface systems due to storm water runoff contaminated with potentially toxic trace metals (e.g. Zn, Cu and Pb). A major source for urban metals is dust that accumulates on roadways. This roadway dust is derived from vehicle wear sources and tends to be enriched in trace metals such as Pb, Zn, Cu, Cd, Ni and Cr. This continuous source is then being transported via storm water runoff to receiving systems, such as storm water retention systems, which become important focusing environments for trace metal deposition. The fate of these roadway derived metals and their bioavailability once deposited in these urban ecosystems is not well understood. In this investigation we tested the hypothesis that the distribution and form of surface deposited roadway-derived Zn is a function of earthworm processes and is species dependent. The results of this investigation indicate that roadway dust derived Zn deposited as a surface layer on urban soils is readily removed from the surface in less than 30 days whether earthworms are present or not. However, after 90 days, the presence of earthworms and the life habit of the earthworm species present was found to have a significant impact on the physical and chemical cycling of roadway derived trace metals in storm water retention basin soils.  相似文献   

2.
Currently the majority of vegetation used on shallow extensive green roofs are species of Sedum, which are able to survive in the harsh green roof environment. While mosses frequently colonize green roofs in Europe, intentional planting of mosses on green roofs is less common, especially in North America. Mosses may contribute to the ecosystem services provided by green roofs, and may act as facilitators of vascular plants. This study examined the effect of three different moss species on soil temperature, water loss rates and the growth of neighbouring vascular plant species. Overall, the presence of mosses in this experiment impacted the neighbour species differently, suggesting that mosses are best used in particular species combinations. One species of grass showed a net benefit of moss neighbours, suggesting that facilitation may be operating. Mosses reduced soil temperature relative to bare substrates; net evapotranspiration of green roof modules planted with mosses varied depending on the identity of moss and neighbour species.  相似文献   

3.

Green roof systems have been increasingly implemented to enhance vegetation cover and associated ecosystem services in urban spaces, with primary goals being the reduction of peak surface runoff, enhanced water quality, and mitigation of urban heat island effects. Recently, green roofs have also received attention as a means to enhance carbon sequestration, but direct measurements of greenhouse gas fluxes from established green roof systems are largely lacking. Here we present observations of CO2 and CH4 fluxes from substrates of experimental extensive green roof units that varied in vegetation type (Sedum spp., and a native meadow species mix), substrate depth, substrate type (high vs. low organic matter content), and irrigation. We predicted that substrate CO2 effluxes would be higher in high-organic-matter substrates and that systems with high organic matter would potentially act as CH4 sources. Substrate fluxes were low compared to natural soils, with seasonal means ranging from an efflux of 0.1–0.4 µmol CO2 m-2.s-1 and uptake of ~0.00–0.04 nmol CH4 m-2.s-1, with higher fluxes late in the growing season. CO2 fluxes showed large increases in response to irrigation and were higher from the high-organic-matter substrate and with increased substrate depth. The strength of the CH4 sink increased in response to prior irrigation treatments, and CH4 emissions were detected only on low-organic-matter substrates early in the growing season. No effects of vegetation type were detected for either CO2 or CH4 flux. Our results indicate that high levels of organic matter in green roof substrates may enhance aerobic soil respiration but are not associated with CH4 emissions, which instead were only detected in low-organic-matter substrates.

  相似文献   

4.
The selection of plant species for use on green roofs has been based primarily on their ability to cope with the harsh climatic conditions of the urban rooftop environment. However, green roof plants must also survive in engineered substrates that often lack organic material and beneficial soil microorganisms such as mycorrhizal fungi. We review the literature on mycorrhizae in the context of green roof ecosystems, identifying aspects of green roof functioning that could be enhanced through the integration of mycorrhizal fungi. Although relatively few studies have addressed the influence of mycorrhizal symbiosis on green roof plants specifically, we include information from a variety of naturally occurring habitats with analogous growing conditions. The available literature suggests that the incorporation of mycorrhizal fungi can improve a number of green roof functional attributes, including plant diversity, drought resilience, leachate quality, nutrient use efficiency and carbon sequestration, all while reducing the need for external nutrient inputs. We present evidence that mycorrhizal fungi are of general benefit to green roof ecosystems, and can be effectively integrated into green roof design. We recommend methods for this integration and propose future research directions.  相似文献   

5.
Green roofs are emerging engineered ecosystems that provide multiple benefits, but many are constructed with nutrient-rich substrate and have been found to leach out high levels of phosphorus (P) in runoff. It is unclear, however, how long green roofs act as sources of P or what mechanisms are responsible for these net losses. We measured P concentrations in runoff water over 4 years from a 1–5 year old extensive green roof in Cincinnati, OH, USA, produced a model to predict runoff P levels into the future, and validated predictions using runoff from 2 nearby extensive green roofs. P concentrations in runoff from the focal green roof were on par with heavily fertilized agroecosystems and displayed strong seasonal dynamics and a rapid decline over the 4-year study. Runoff measurements and changes in substrate P content over a 2-year period were used to estimate a mass balance for green roof P. P loss from the substrate was substantial (4.55 ± 2.3 g P/m2/yr), but only a small portion of the loss was attributable to leaching of P in runoff (0.19–0.65 g P/m2/yr). Missing P may be attributed to a combination of plant uptake and altered P form and binding strength, but further research is needed to precisely identify the mechanisms of P depletion. Our results also suggest that these and similar extensive green roofs are likely to act as environmentally significant sources of P for 10 or more years following roof installation, highlighting the need for reductions in initial substrate P content.  相似文献   

6.
Plant-based stormwater management systems such as green roofs are typically composed exclusively of vascular plants. Yet, mosses have several desirable properties that could warrant their more widespread use in green roof applications. In natural systems mosses are important primary colonizers of bare ground, and their establishment improves water storage and provides numerous soil benefits including carbon and nitrogen sequestration. Additionally, mosses often facilitate the establishment and survival of vascular plants at otherwise environmentally harsh or stressful sites. Despite their potential value, few studies have investigated the functional performance of mosses on green roofs. In this study we evaluated the establishment success and potential stormwater performance of three candidate moss species. We also directly compared the runoff and thermal characteristics of replicate moss covered green roofs to vascular planted and bare roofs. Candidate mosses had high water holding capacities, storing 8–10 times their weight in water compared to only 1.3 times for typical green roof medium. Mock-up roof sections composed of mosses and medium had delayed and reduced runoff flows relative to medium only sections, although the magnitude of these effects varied with moss species. In field trials all three mosses survived a harsh rooftop environment with limited summer irrigation, although lateral growth after one year was minimal. Green roofs planted solely with Racomitrium canescens had between 12–24% higher stormwater retention than vascular or medium only roofs. Moss cover also ameliorated temperature fluctuations on green roofs. Hourly heating rates were buffered to a similar degree (less than half that of surface temperatures) 5 cm below the surface of both moss covered and medium only roofs. In contrast, cooling under the surface of the moss roof was nearly 6 times faster than under the medium only roof. These results demonstrate the potential for mosses to be valuable components of green roofs, either in combination with vascular plants or planted exclusively.  相似文献   

7.
Media depth influences Sedum green roof establishment   总被引:1,自引:1,他引:0  
Species selection and initial establishment of plants is critical for long term survival and health of green roofs. Plants that can withstand harsh environmental conditions and provide rapid coverage on extensive green roofs can reduce erosion, limit weed invasion, and provide a more aesthetically pleasing roof to satisfy customers. This study evaluated the effect of green roof substrate depth on initial establishment of 12 Sedum species in a Midwestern US climate. Plugs of 12 Sedum species were planted on 8 June 2005 and evaluated bi-weekly until first frost for absolute cover (AC) using a stainless steel point-frame transect. Most species exhibited greater growth and coverage at a depth of 7.0 and 10.0 cm relative to 4.0 cm. AC was highest for Sedum sarmentosum at all depths, but this species may be too aggressive. Other suitable species include Sedum floriferum, Sedum stefco, and Sedum spurium ‘John Creech’. In general, species that are less suitable are Sedum ‘Angelina’, Sedum cauticola ‘Lidakense’, Sedum ewersii, Sedum ochroleucum, and Sedum reflexum ‘Blue Spruce’. For the species tested, a minimum of 7.0 cm is highly recommended. With shallower substrates, S. sarmentosum and S. stefco will provide the fastest coverage. This paper is a portion of a M.S. Thesis submitted by K.L. Getter.  相似文献   

8.
Green roofs are potentially valuable habitats for plants and animals in urban areas. Wild bees are important pollinators for crops and wild plants and may be enhanced by anthropogenic structures, but little is known about wild bees on green roofs in cities. This study investigates the effects of green roof qualities (floral resources, substrate character and depth, roof height and age) on wild bee diversity, abundance and traits (nesting type, sociality, pollen specialisation, body size) on green roofs in Vienna. Nine green roofs were sampled monthly between March and September 2014 by a semi quantitative approach. Wild bees were collected in pre-defined sub-areas for the same amount of time and floral resources were recorded. Over all green roofs, 992 individuals belonging to 90 wild bee species were observed. Wild bee diversity and abundance was strongly positively affected by increasing forage availability and fine substrates. Wild bees on roofs were characteristically solitary, polylectic and 8.3–11.2 mm. Regarding nesting type, the percentage of above-ground nesting bees was higher compared to the common species composition in Middle Europe. Ground-nesting wild bees were mainly eusocial, smaller (6.4–9.6 mm) and positively affected by roofs with fine substrates. During June, when forage availability by wildflowers on roofs was “low” (5–15% flower coverage), flowering Sedum species were an important forage resource. We conclude that wild bee diversity and abundance on green roofs are enhanced by floral resources. Furthermore, the installations of areas with finer and deeper substrates benefit ground nesting and eusocial wild bees.  相似文献   

9.
The growing desire to make the urban environment more sustainable from an ecological point of view has stimulated research on the architectural and agronomic aspects of green roofs. The practical realisation of green roofs, is however limited by economic and ecological issues. More specifically, water availability is the most limiting factor, and is likely to be ever more so in the future in the light of climate change. For this reason, we evaluated the agronomic performance of several xerophytes in a simulated dry green roof. Seeds of 20 species were collected in typically dry habitats (abandoned quarries, rocky soils, dunes, etc.) and studied in the laboratory for germination ecology. In cases of strong dormancy, methods were tested to stimulate germination and their germination ecology was studied. The resulting seedlings were transplanted in spring 2008 in two green roof types that differ in substrate depth (150 and 200 mm) made up of lapil, pumice, zeolites and peat, resting on a drainage layer of hydroperlite. Temperature and humidity in the substrate and drainage layer were measured during the whole test period. Survival of the seedlings in both substrate depths was almost 100%, favoured by a rainy spring. Most of the tested species showed an excellent performance during the hot and dry summer months in terms of survival rates, growth, and vegetation cover dynamics, notwithstanding the difficult ecological conditions (temperatures around 50°C; hydric potential Ψ -15 bars). Furthermore, most of the species had a long flowering stage in the first year of growth. Plants in the green roof with the deeper substrate depth produced, for most of the tested taxa, a significantly higher vegetation cover and growth compared to when they were placed in the 150 mm substrate. The results of this study show that some Mediterranean xerophytes have biological characteristics suitable for their use in dry green roofs, although an irrigation system for emergency use seems advisable. To conclude, further research should focus on long term evaluation of green roof vegetation in terms of plant survival and flowering dynamics.  相似文献   

10.
Detrimental effects of road deicing salt on vegetation are well known and have been well studied, with the exception of typical green roof plants, which could experience damage on green roofs with public access and green walls near roadways in cold climates. Two studies were conducted comparing salt tolerance of five Sedum species, two Allium species and a mixture of turf grasses when exposed to six levels of salinity applied either as foliar spray or as liquid applications to the soil. A third study compared salt tolerance when plants were placed at three distances from a major highway. Response variables measured included survival, a health score from 0 to 5, and a growth index. Allium cernuum, A. senscens and S. ellecombianum were relatively tolerant of both saline spray and soil inundation at high saline concentrations in terms of survival, mean health scores, percentage of healthy plants and growth index. Sedum reflexum was much less tolerant of saline spray at higher salinity concentrations and soil inundation regardless of salinity levels. Distance from the road had no effect on plant survival rates but plants farthest from the road had higher mean health scores and a greater percentage of healthy plants than plants closer to the highway.  相似文献   

11.
From an ecological perspective, urban green roofs can be viewed as green islands embedded in an urban matrix. Island biogeography theory suggests that species richness on an island is the outcome of dynamic equilibrium between immigration and extinction. Immigration is affected by the size of an island and distance of an island from a colonizing source. In the context of green roofs, building height and horizontal distance from green areas can potentially be a limiting factor for many species. Here, we considered two distance components of green roofs - vertical (building height) and horizontal (distance of building from open green areas). Based on island biogeography theory, we would expect species richness or community similarity to be negatively related to horizontal or vertical distances from colonizing sources. The green roof literature addressing such questions is currently sparse. In our review comprised of 10 studies, we were unable to identify consistent statistically significant richness-distance or community similarity-distance (vertical or horizontal) relationships. The absence of statistically significant relationships could be due in large part to low statistical power as a consequence of both the paucity of roofs and limited range of vertical distances in many of the existing studies. In addition, these roofs differ in numerous aspects (e.g. roof size, age, substrate type, plant composition and building height). The low number of replicates, combined with the lack of homogeneity among replicates combines to reduce statistical power and our ability to detect differences.  相似文献   

12.

High population growth in the tropics is driving urbanisation, removing diverse natural ecosystems. This is causing native species to suffer while introduced synanthropes flourish. City planners are developing urban greenspace networks, in part trying to address this issue. Architects contribute to these greenspace networks by designing elevated and ground level green spaces on large-scale buildings. However, little evidence is available on whether building green spaces support native fauna. This is true for birds in tropical Singapore that support important ecosystem services and have existence value. Therefore, in this study, we conducted bird surveys and statistical analyses to determine, if and how vegetation on three building green space types (ground gardens, roof gardens and green walls) have a positive impact on native or introduced bird species. We found that elevated greenery (roof gardens and green walls) on large-scale buildings supported a higher richness of birds and abundance of urban native birds than control roofs and walls without vegetation. Ground gardens supported similar levels of native species as roof gardens but also a larger proportion of generalist synanthropes. However, we found no tropical forest habitat specialists across any space type. Therefore, we recommend roof gardens and ground gardens as a potential space for urban natives outside of a less competitive ground-level urban environment. Our study also found certain building design elements (height of elevated space, presence of specific plants) supported different species groups. Therefore, we suggest that these ecological requirements for different species groups are considered when designing a building’s green space.

  相似文献   

13.
Green roofs can contribute to enrichment and conservation of urban ecology. An experimental green roof was established in humid-tropical Hong Kong to monitor over two years its spontaneous colonization by plants and bird visits. Some 94 voluntary vascular plant species from 26 families and 76 genera were established, with propagules brought mainly by birds and wind and secondarily inherited from soil seed bank. Plant species composition changed dynamically during the study period. They fall into three groups, namely dominant ruderal (herbaceous and sub-shrub) as surrogate of early-stage local grassland ecosystem succession, arboreal (trees and shrubs), and hygrophilous herb. Progressive increase in vegetation cover was accompanied by changes in species diversity and evenness. In addition, 16 bird species from 8 families and 14 genera were recorded. Ten species were residents and the six migrant species were winter visitors. Their food preference was mainly omnivore and insectivore. Winter and the second year encountered higher species richness, diversity, and evenness. Most vegetation parameters correlated positively with avian community indexes, signifying provision of sustenance by green-roof ecosystem to birds. Vegetation coverage correlated negatively with avian abundance, due to shunning by the abundant ground-foraging Tree Sparrow. Both local common ruderal plant species and common urban bird species can successfully establish and reproduce on the extensive green roof, confirming potentials for urban ecology and biodiversity enhancement and conservation even in densely-developed urban areas. The successful nurturing of naturalistic green roof offers new opportunities for green roof design that deviates from the predominant cultivated-horticultural approach.  相似文献   

14.
While it is expected that green roofs support a wider variety of insects compared with conventional roof surfaces, few studies have quantified insect diversity on green roofs. Even fewer have attempted to determine whether green roofs can support insect communities comparable to level-ground urban habitats. In this study, insect richness, abundance and diversity indices were compared between five pairs of intensive green roofs and adjacent ground-level habitat patches in downtown Halifax, Nova Scotia. Pitfall traps were set at each site, collected bi-weekly between May-October 2009 and captured insects were identified to morphospecies (except where taxonomic expertise was available). No significant differences in richness, abundance or any of the indices (S, H’, Evar) were detected in analysis, which included plant species richness, site area and sampling effort as covariables. However, richness and abundance tended to be greater at ground level for all orders (except Heteroptera), and diversity appeared to increase away from the downtown core. Insect composition differed slightly between green roof and ground-level sites; only 17 species were collected from a single site type in numbers greater than five specimens. Nevertheless, a wide variety of insects, including many uncommon species were collected from green roofs, supporting the idea that these habitats can contribute to sustaining biodiversity in cities.  相似文献   

15.
The relative contribution of substrate depth and vegetation type on temperature mitigation and stormwater runoff reduction was studied in an experimental green roof in North eastern Italy. Two substrate depths (120 and 200?mm) and two vegetation types (herbaceous plants and shrubs, respectively) were used, and compared to control modules with similar substrate depths but left bare of vegetation. Experimental observations showed that: a) green roofs substantially reduce thermal load over the rooftop, with significant effects of substrate depth and no apparent impact of vegetation type; b) thermal effects are strongly influenced by substrate water content; c) green roofs strongly reduce water runoff with significant substrate x vegetation effects. Our data suggest that green roof design addressed to optimization of the thermal functions should take into account adequate planning of substrate depth. Moreover, our data show that vegetated modules out-competed medium-only ones in terms of runoff reduction capacity, in accordance with some previous studies. Both shrub-vegetated and herbaceous modules intercepted and stored more than 90% rainfall during intense precipitation events, with no significant difference between the two vegetation types despite different substrate depths.  相似文献   

16.
Green roofs have the potential to retain stormwater on the roof surface and lower the thermal loading on buildings. Because of this, the greatest environmental benefits from green roofs might be achieved in subtropical climates characterized by high temperatures and intense rain events. There is, however, little research to support this. In a replicated study in Texas, we compared the performance of six different extensive green roof designs vegetated with native species, to non-reflective (black) roofs, and reflective (white) roofs. Preliminary hydrologic and thermal profile data indicated not only differences between green and non-vegetated roofs, but also among green roof designs. Maximum green roof temperatures were cooler than conventional roofs by 38°C at the roof membrane and 18°C inside air temperature, with little variation among green roofs. Maximum run-off retention was 88% and 44% for medium and large rain events but some green roof types showed very limited retention characteristics. These data demonstrate indicate that: 1. Green roofs can greatly affect the roof temperature profile—cooling surface layers and internal space on warm days. 2. Green roofs can retain significant amounts of rainfall, this is dependent on the size of the rain event and design and can fail if not designed correctly. We suggest that as green roofs vary so much in their design and performance, they must be designed according to specific goals rather than relying on assumed intrinsic attributes.  相似文献   

17.
Green roofs have been described as technical solutions to overcome urban environmental problems, such as decrease of vegetation and stormwater management. In the present study, two pilot 20 m2 extensive green roofs were implemented in an urban Mediterranean region, at a 1st storey on a warehouse building structure, in order to test the adequacy of different substrates for supporting aromatic plants (Lavandula dentata, Helichrysum italicum, Satureja montana, Thymus caespititius and Thymus pseudolanuginosus). Experimental substrates included expanded clay and granulated cork as main components, supplemented with organic matter and crushed egg shell. A commercial substrate that obeys to FLL guidelines was also tested. Plant growth was assessed and compared within each platform. All experimental substrates proved to be adequate for vegetation growth, with the combination of 70% expanded clay, 15% organic matter and 15% crushed egg shell showing the best results regarding plant establishment and growth over time. Water runoff quality parameters - turbidity, pH, conductivity, NH4 +, NO3 ?, PO4 3? - met standard values required for water reuse for non-potable purposes, such as toilet flushing or irrigation. Preliminary qualitative thermographic measurements comparing surface temperature of different plant species and the substrate showed that temperature of vegetation surface was lower than substrate, reinforcing green roofs benefits of lowering air temperature in their surroundings. The present research shows that aromatic vegetation combined with clay substrates are suitable for green roofs located in countries of the Mediterranean region.  相似文献   

18.
Despite the fact that green roofs are based upon living systems, the majority of published research literature contains little specific information on the contribution of plants to the various functions and properties of green roofs. Furthermore, there has been little investigation of the influence of the composition of vegetation on the physical properties of a green roof system. This paper reviews previously published material that throws light on the role of vegetation composition on green roof function, with particular regard to rainwater runoff. Two experiments at the University of Sheffield, UK, are considered in detail: (a) An outdoor lysimeter experiment that investigated the quantity of runoff from trays containing 100 mm of growing medium and combinations of grasses and forbs, together with bare substrate, and (b) a greenhouse experiment using simulated rainfall to estimate the amount of rainfall intercepted by different vegetation types. In both cases the vegetation ranged from simple monocultures of forbs and grasses through to complex mixtures of both. In both cases, the composition of the vegetation was found to significantly affect both the amount of water retained and released from the system.  相似文献   

19.
Stormwater Ponds (SPs) are common throughout urbanizing environments, yet their ecological role has not been well established. SPs are primarily designed for hydrological control of stormwater, but many are also designed to attenuate the quality of runoff prior to discharge. Thus, SPs likely serve as an important land-water linkage between terrestrial and aquatic systems in urban areas. In this study, we characterized 22 SPs and 3 natural reference ponds from Durham Region, Ontario, Canada representing a gradient in emergent plant cover. There was high variability and wide ranges in water quality parameters among SPs. The percentage of impervious surface served as a measure of urbanization intensity, and was a significant driver of conductivity, chloride and total suspended solids regardless of emergent vegetation cover. In fact, only water temperature (r?=??0.61) was found to significantly correlate with vegetation cover. This suggests a minimal role for emergent vegetation in mediating SP water quality. SPs had notably higher conductivity and runoff-metals (Cu, Zn, Pb, and Cr) than reference ponds, but nutrients (Total P and Total N) and algal biomass did not significantly differ between SPs and reference ponds. Dominant phytoplankton groups included blue-green and euglenid algae, both of which are indicators of eutrophic and high organic systems, respectively. The blue-green genus Microcystis was detected in all ponds, and was the dominant taxon in most SPs. This raises concern that SPs may serve as reservoirs of toxin-producing algae. Multivariate analyses of metals, water quality variables and algal species composition showed considerable dissimilarity among SPs, yet comparably high similarity among reference ponds. This indicates that SPs are dynamic and diverse systems despite their engineered origins. Such broad gradients in water quality characteristics also imply variable impacts to receiving waters in the same region.  相似文献   

20.
膜技术是水处理技术之一,其中MF膜可截留水中绝大部分悬浮物、胶体和细菌,是可靠的除浊和消毒工艺,但对水中有机物的去除率却不高,需作适当的预处理。预氧化技术能有效去除水中的有机污染物,提高出水水质。采用高锰酸钾预氧化与微滤膜联用处理微污染原水试验结果表明:出水浊度小于0.1NTU,Fe的去除率达到97%以上,对浊度、CODMn、Fe、Mn等均有较好的去除效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号