首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hidden semi-Markov models (HSMMs) were introduced to overcome the constraint of a geometric sojourn time distribution for the different hidden states in the classical hidden Markov models. Several variations of HSMMs were proposed that model the sojourn times by a parametric or a nonparametric family of distributions. In this article, we concentrate our interest on the nonparametric case where the duration distributions are attached to transitions and not to states as in most of the published papers in HSMMs. Therefore, it is worth noticing that here we treat the underlying hidden semi-Markov chain in its general probabilistic structure. In that case, Barbu and Limnios (2008 Barbu , V. , Limnios , N. ( 2008 ). Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications: Their Use in Reliability and DNA Analysis . New York : Springer . [Google Scholar]) proposed an Expectation–Maximization (EM) algorithm in order to estimate the semi-Markov kernel and the emission probabilities that characterize the dynamics of the model. In this article, we consider an improved version of Barbu and Limnios' EM algorithm which is faster than the original one. Moreover, we propose a stochastic version of the EM algorithm that achieves comparable estimates with the EM algorithm in less execution time. Some numerical examples are provided which illustrate the efficient performance of the proposed algorithms.  相似文献   

2.
The three-parameter asymmetric Laplace distribution (ALD) has received increasing attention in the field of quantile regression due to an important feature between its location and asymmetric parameters. On the basis of the representation of the ALD as a normal-variance–mean mixture with an exponential mixing distribution, this article develops EM and generalized EM algorithms, respectively, for computing regression quantiles of linear and nonlinear regression models. It is interesting to show that the proposed EM algorithm and the MM (Majorization–Minimization) algorithm for quantile regressions are really the same in terms of computation, since the updating formula of them are the same. This provides a good example that connects the EM and MM algorithms. Simulation studies show that the EM algorithm can successfully recover the true parameters in quantile regressions.  相似文献   

3.
Grouped data are frequently used in several fields of study. In this work, we use the expectation-maximization (EM) algorithm for fitting the skew-normal (SN) mixture model to the grouped data. Implementing the EM algorithm requires computing the one-dimensional integrals for each group or class. Our simulation study and real data analyses reveal that the EM algorithm not only always converges but also can be implemented in just a few seconds even when the number of components is large, contrary to the Bayesian paradigm that is computationally expensive. The accuracy of the EM algorithm and superiority of the SN mixture model over the traditional normal mixture model in modelling grouped data are demonstrated through the simulation and three real data illustrations. For implementing the EM algorithm, we use the package called ForestFit developed for R environment available at https://cran.r-project.org/web/packages/ForestFit/index.html.  相似文献   

4.
We propose a new stochastic approximation (SA) algorithm for maximum-likelihood estimation (MLE) in the incomplete-data setting. This algorithm is most useful for problems when the EM algorithm is not possible due to an intractable E-step or M-step. Compared to other algorithm that have been proposed for intractable EM problems, such as the MCEM algorithm of Wei and Tanner (1990), our proposed algorithm appears more generally applicable and efficient. The approach we adopt is inspired by the Robbins-Monro (1951) stochastic approximation procedure, and we show that the proposed algorithm can be used to solve some of the long-standing problems in computing an MLE with incomplete data. We prove that in general O(n) simulation steps are required in computing the MLE with the SA algorithm and O(n log n) simulation steps are required in computing the MLE using the MCEM and/or the MCNR algorithm, where n is the sample size of the observations. Examples include computing the MLE in the nonlinear error-in-variable model and nonlinear regression model with random effects.  相似文献   

5.
Parameters of a finite mixture model are often estimated by the expectation–maximization (EM) algorithm where the observed data log-likelihood function is maximized. This paper proposes an alternative approach for fitting finite mixture models. Our method, called the iterative Monte Carlo classification (IMCC), is also an iterative fitting procedure. Within each iteration, it first estimates the membership probabilities for each data point, namely the conditional probability of a data point belonging to a particular mixing component given that the data point value is obtained, it then classifies each data point into a component distribution using the estimated conditional probabilities and the Monte Carlo method. It finally updates the parameters of each component distribution based on the classified data. Simulation studies were conducted to compare IMCC with some other algorithms for fitting mixture normal, and mixture t, densities.  相似文献   

6.
Karlis and Santourian [14 D. Karlis and A. Santourian, Model-based clustering with non-elliptically contoured distribution, Stat. Comput. 19 (2009), pp. 7383. doi: 10.1007/s11222-008-9072-0[Crossref], [Web of Science ®] [Google Scholar]] proposed a model-based clustering algorithm, the expectation–maximization (EM) algorithm, to fit the mixture of multivariate normal-inverse Gaussian (NIG) distribution. However, the EM algorithm for the mixture of multivariate NIG requires a set of initial values to begin the iterative process, and the number of components has to be given a priori. In this paper, we present a learning-based EM algorithm: its aim is to overcome the aforementioned weaknesses of Karlis and Santourian's EM algorithm [14 D. Karlis and A. Santourian, Model-based clustering with non-elliptically contoured distribution, Stat. Comput. 19 (2009), pp. 7383. doi: 10.1007/s11222-008-9072-0[Crossref], [Web of Science ®] [Google Scholar]]. The proposed learning-based EM algorithm was first inspired by Yang et al. [24 M.-S. Yang, C.-Y. Lai, and C.-Y. Lin, A robust EM clustering algorithm for Gaussian mixture models, Pattern Recognit. 45 (2012), pp. 39503961. doi: 10.1016/j.patcog.2012.04.031[Crossref], [Web of Science ®] [Google Scholar]]: the process of how they perform self-clustering was then simulated. Numerical experiments showed promising results compared to Karlis and Santourian's EM algorithm. Moreover, the methodology is applicable to the analysis of extrasolar planets. Our analysis provides an understanding of the clustering results in the ln?P?ln?M and ln?P?e spaces, where M is the planetary mass, P is the orbital period and e is orbital eccentricity. Our identified groups interpret two phenomena: (1) the characteristics of two clusters in ln?P?ln?M space might be related to the tidal and disc interactions (see [9 I.G. Jiang, W.H. Ip, and L.C. Yeh, On the fate of close-in extrasolar planets, Astrophys. J. 582 (2003), pp. 449454. doi: 10.1086/344590[Crossref], [Web of Science ®] [Google Scholar]]); and (2) there are two clusters in ln?P?e space.  相似文献   

7.
Estimators derived from the expectation‐maximization (EM) algorithm are not robust since they are based on the maximization of the likelihood function. We propose an iterative proximal‐point algorithm based on the EM algorithm to minimize a divergence criterion between a mixture model and the unknown distribution that generates the data. The algorithm estimates in each iteration the proportions and the parameters of the mixture components in two separate steps. Resulting estimators are generally robust against outliers and misspecification of the model. Convergence properties of our algorithm are studied. The convergence of the introduced algorithm is discussed on a two‐component Weibull mixture entailing a condition on the initialization of the EM algorithm in order for the latter to converge. Simulations on Gaussian and Weibull mixture models using different statistical divergences are provided to confirm the validity of our work and the robustness of the resulting estimators against outliers in comparison to the EM algorithm. An application to a dataset of velocities of galaxies is also presented. The Canadian Journal of Statistics 47: 392–408; 2019 © 2019 Statistical Society of Canada  相似文献   

8.
The EM algorithm and its extensions are very popular tools for maximum likelihood estimation in incomplete data setting. However, one of the limitations of these methods is their slow convergence. The PX-EM (parameter-expanded EM) algorithm was proposed by Liu, Rubin and Wu to make EM much faster. On the other hand, stochastic versions of EM are powerful alternatives of EM when the E-step is untractable in a closed form. In this paper we propose the PX-SAEM which is a parameter expansion version of the so-called SAEM (Stochastic Approximation version of EM). PX-SAEM is shown to accelerate SAEM and improve convergence toward the maximum likelihood estimate in a parametric framework. Numerical examples illustrate the behavior of PX-SAEM in linear and nonlinear mixed effects models.  相似文献   

9.
For a continuous-time Markov process, commonly, only discrete-time observations are available. We analyze multiple observations of a homogeneous Markov jump process with an absorbing state. We establish consistency of the maximum likelihood estimator, as the number of Markov processes increases. To accomplish uniform convergence in the continuous mapping theorem, we use the continuity of the transition probability in the parameters, the compactness of the parameter space and the boundedness of probabilities. We allow for a stochastic time-grid of observation points with different intensities for each observation process. Furthermore, we account for right censoring. The estimate is obtained via the EM algorithm with an E-step given in closed form. In our empirical application of credit rating histories, we fit the model of Weißbach and Mollenhauer (J Korean Stat Soc 40:469–485, 2011) and find marked differences, compared to the continuous-time analysis.  相似文献   

10.
This paper introduces a finite mixture of canonical fundamental skew \(t\) (CFUST) distributions for a model-based approach to clustering where the clusters are asymmetric and possibly long-tailed (in: Lee and McLachlan, arXiv:1401.8182 [statME], 2014b). The family of CFUST distributions includes the restricted multivariate skew \(t\) and unrestricted multivariate skew \(t\) distributions as special cases. In recent years, a few versions of the multivariate skew \(t\) (MST) mixture model have been put forward, together with various EM-type algorithms for parameter estimation. These formulations adopted either a restricted or unrestricted characterization for their MST densities. In this paper, we examine a natural generalization of these developments, employing the CFUST distribution as the parametric family for the component distributions, and point out that the restricted and unrestricted characterizations can be unified under this general formulation. We show that an exact implementation of the EM algorithm can be achieved for the CFUST distribution and mixtures of this distribution, and present some new analytical results for a conditional expectation involved in the E-step.  相似文献   

11.
Finite mixtures of multivariate skew t (MST) distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour. Recently, they have been exploited as an effective tool for modelling flow cytometric data. A number of algorithms for the computation of the maximum likelihood (ML) estimates for the model parameters of mixtures of MST distributions have been put forward in recent years. These implementations use various characterizations of the MST distribution, which are similar but not identical. While exact implementation of the expectation-maximization (EM) algorithm can be achieved for ‘restricted’ characterizations of the component skew t-distributions, Monte Carlo (MC) methods have been used to fit the ‘unrestricted’ models. In this paper, we review several recent fitting algorithms for finite mixtures of multivariate skew t-distributions, at the same time clarifying some of the connections between the various existing proposals. In particular, recent results have shown that the EM algorithm can be implemented exactly for faster computation of ML estimates for mixtures with unrestricted MST components. The gain in computational time is effected by noting that the semi-infinite integrals on the E-step of the EM algorithm can be put in the form of moments of the truncated multivariate non-central t-distribution, similar to the restricted case, which subsequently can be expressed in terms of the non-truncated form of the central t-distribution function for which fast algorithms are available. We present comparisons to illustrate the relative performance of the restricted and unrestricted models, and demonstrate the usefulness of the recently proposed methodology for the unrestricted MST mixture, by some applications to three real datasets.  相似文献   

12.
13.
In this article, we consider a parametric survival model that is appropriate when the population of interest contains long-term survivors or immunes. The model referred to as the cure rate model was introduced by Boag 1 Boag, J. W. 1949. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J. R. Stat. Soc. Ser. B, 11: 1553.  [Google Scholar] in terms of a mixture model that included a component representing the proportion of immunes and a distribution representing the life times of the susceptible population. We propose a cure rate model based on the generalized exponential distribution that incorporates the effects of risk factors or covariates on the probability of an individual being a long-time survivor. Maximum likelihood estimators of the model parameters are obtained using the the expectation-maximisation (EM) algorithm. A graphical method is also provided for assessing the goodness-of-fit of the model. We present an example to illustrate the fit of this model to data that examines the effects of different risk factors on relapse time for drug addicts.  相似文献   

14.
Orthogonal block designs in mixture experiments have been extensively studied by various authors. Aggarwal et al. [M.L. Aggarwal, P. Singh, V. Sarin, and B. Husain, Mixture designs in orthogonal blocks using F-squares, METRON – Int. J. Statist. LXVII(2) (2009), pp. 105–128] considered the case of components assuming the same volume fractions and obtained mixture designs in orthogonal blocks using F-squares. In this paper, we have used the class of designs presented by Aggarwal et al. and have obtained D-, A- and E-optimal orthogonal block designs for four components in two blocks for Becker's mixture models and K-model, respectively. Orthogonality conditions for the considered models are also given.  相似文献   

15.
It is well known that the log-likelihood function for samples coming from normal mixture distributions may present spurious maxima and singularities. For this reason here we reformulate some Hathaways results and we propose two constrained estimation procedures for multivariate normal mixture modelling according to the likelihood approach. Their perfomances are illustrated on the grounds of some numerical simulations based on the EM algorithm. A comparison between multivariate normal mixtures and the hot-deck approach in missing data imputation is also considered.Salvatore Ingrassia: S. Ingrassia carried out the research as part of the project Metodi Statistici e Reti Neuronali per lAnalisi di Dati Complessi (PRIN 2000, resp. G. Lunetta).  相似文献   

16.
The t-distribution (univariate and multivariate) has many useful applications in robust statistical analysis. The parameter estimation of the t-distribution is carried out using maximum likelihood (ML) estimation method, and the ML estimates are obtained via the Expectation-Maximization (EM) algorithm. In this article, we will use the maximum Lq-likelihood (MLq) estimation method introduced by Ferrari and Yang (2010 Ferrari, D., and Y. Yang. 2010. Maximum lq-likelihood estimation. The Annals of Statistics 38 (2):75383.[Crossref], [Web of Science ®] [Google Scholar]) to estimate all the parameters of the multivariate t-distribution. We modify the EM algorithm to obtain the MLq estimates. We provide a simulation study and a real data example to illustrate the performance of the MLq estimators over the ML estimators.  相似文献   

17.
This paper proposes a method for estimating the parameters in a generalized linear model with missing covariates. The missing covariates are assumed to come from a continuous distribution, and are assumed to be missing at random. In particular, Gaussian quadrature methods are used on the E-step of the EM algorithm, leading to an approximate EM algorithm. The parameters are then estimated using the weighted EM procedure given in Ibrahim (1990). This approximate EM procedure leads to approximate maximum likelihood estimates, whose standard errors and asymptotic properties are given. The proposed procedure is illustrated on a data set.  相似文献   

18.
The label-switching problem is one of the fundamental problems in Bayesian mixture analysis. Using all the Markov chain Monte Carlo samples as the initials for the expectation-maximization (EM) algorithm, we propose to label the samples based on the modes they converge to. Our method is based on the assumption that the samples converged to the same mode have the same labels. If a relative noninformative prior is used or the sample size is large, the posterior will be close to the likelihood and then the posterior modes can be located approximately by the EM algorithm for mixture likelihood, without assuming the availability of the closed form of the posterior. In order to speed up the computation of this labeling method, we also propose to first cluster the samples by K-means with a large number of clusters K. Then, by assuming that the samples within each cluster have the same labels, we only need to find one converged mode for each cluster. Using a Monte Carlo simulation study and a real dataset, we demonstrate the success of our new method in dealing with the label-switching problem.  相似文献   

19.
Abstract

In this article, we revisit the problem of fitting a mixture model under the assumption that the mixture components are symmetric and log-concave. To this end, we first study the nonparametric maximum likelihood estimation (MLE) of a monotone log-concave probability density. To fit the mixture model, we propose a semiparametric EM (SEM) algorithm, which can be adapted to other semiparametric mixture models. In our numerical experiments, we compare our algorithm to that of Balabdaoui and Doss (2018 Balabdaoui, F., and C. R. Doss. 2018. Inference for a two-component mixture of symmetric distributions under log-concavity. Bernoulli 24 (2):105371.[Crossref], [Web of Science ®] [Google Scholar], Inference for a two-component mixture of symmetric distributions under log-concavity. Bernoulli 24 (2):1053–71) and other mixture models both on simulated and real-world datasets.  相似文献   

20.
Abstract

In this paper, we discuss how to model the mean and covariancestructures in linear mixed models (LMMs) simultaneously. We propose a data-driven method to modelcovariance structures of the random effects and random errors in the LMMs. Parameter estimation in the mean and covariances is considered by using EM algorithm, and standard errors of the parameter estimates are calculated through Louis’ (1982 Louis, T.A. (1982). Finding observed information using the EM algorithm. J. Royal Stat. Soc. B 44:98130. [Google Scholar]) information principle. Kenward’s (1987 Kenward, M.G. (1987). A method for comparing profiles of repeated measurements. Appl. Stat. 36:296308.[Crossref], [Web of Science ®] [Google Scholar]) cattle data sets are analyzed for illustration,and comparison to the literature work is made through simulation studies. Our numerical analysis confirms the superiority of the proposed method to existing approaches in terms of Akaike information criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号