首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A tutorial on adaptive MCMC   总被引:1,自引:0,他引:1  
We review adaptive Markov chain Monte Carlo algorithms (MCMC) as a mean to optimise their performance. Using simple toy examples we review their theoretical underpinnings, and in particular show why adaptive MCMC algorithms might fail when some fundamental properties are not satisfied. This leads to guidelines concerning the design of correct algorithms. We then review criteria and the useful framework of stochastic approximation, which allows one to systematically optimise generally used criteria, but also analyse the properties of adaptive MCMC algorithms. We then propose a series of novel adaptive algorithms which prove to be robust and reliable in practice. These algorithms are applied to artificial and high dimensional scenarios, but also to the classic mine disaster dataset inference problem.  相似文献   

2.
Data augmentation is required for the implementation of many Markov chain Monte Carlo (MCMC) algorithms. The inclusion of augmented data can often lead to conditional distributions from well‐known probability distributions for some of the parameters in the model. In such cases, collapsing (integrating out parameters) has been shown to improve the performance of MCMC algorithms. We show how integrating out the infection rate parameter in epidemic models leads to efficient MCMC algorithms for two very different epidemic scenarios, final outcome data from a multitype SIR epidemic and longitudinal data from a spatial SI epidemic. The resulting MCMC algorithms give fresh insight into real‐life epidemic data sets.  相似文献   

3.
Markov chain Monte Carlo (MCMC) is an important computational technique for generating samples from non-standard probability distributions. A major challenge in the design of practical MCMC samplers is to achieve efficient convergence and mixing properties. One way to accelerate convergence and mixing is to adapt the proposal distribution in light of previously sampled points, thus increasing the probability of acceptance. In this paper, we propose two new adaptive MCMC algorithms based on the Independent Metropolis–Hastings algorithm. In the first, we adjust the proposal to minimize an estimate of the cross-entropy between the target and proposal distributions, using the experience of pre-runs. This approach provides a general technique for deriving natural adaptive formulae. The second approach uses multiple parallel chains, and involves updating chains individually, then updating a proposal density by fitting a Bayesian model to the population. An important feature of this approach is that adapting the proposal does not change the limiting distributions of the chains. Consequently, the adaptive phase of the sampler can be continued indefinitely. We include results of numerical experiments indicating that the new algorithms compete well with traditional Metropolis–Hastings algorithms. We also demonstrate the method for a realistic problem arising in Comparative Genomics.  相似文献   

4.
Markov chain Monte Carlo (MCMC) algorithms have revolutionized Bayesian practice. In their simplest form (i.e., when parameters are updated one at a time) they are, however, often slow to converge when applied to high-dimensional statistical models. A remedy for this problem is to block the parameters into groups, which are then updated simultaneously using either a Gibbs or Metropolis-Hastings step. In this paper we construct several (partially and fully blocked) MCMC algorithms for minimizing the autocorrelation in MCMC samples arising from important classes of longitudinal data models. We exploit an identity used by Chib (1995) in the context of Bayes factor computation to show how the parameters in a general linear mixed model may be updated in a single block, improving convergence and producing essentially independent draws from the posterior of the parameters of interest. We also investigate the value of blocking in non-Gaussian mixed models, as well as in a class of binary response data longitudinal models. We illustrate the approaches in detail with three real-data examples.  相似文献   

5.
In this paper, we propose a value-at-risk (VaR) estimation technique based on a new stochastic volatility model with leverage effect, nonconstant conditional mean and jump. In order to estimate the model parameters and latent state variables, we integrate the particle filter and adaptive Markov Chain Monte Carlo (MCMC) algorithms to develop a novel adaptive particle MCMC (A-PMCMC) algorithm. Comprehensive simulation experiments based on three stock indices and two foreign exchange time series show effectiveness of the proposed A-PMCMC algorithm and the VaR estimation technique.  相似文献   

6.
In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.  相似文献   

7.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

8.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

9.
Models for geostatistical data introduce spatial dependence in the covariance matrix of location-specific random effects. This is usually defined to be a parametric function of the distances between locations. Bayesian formulations of such models overcome asymptotic inference and estimation problems involved in maximum likelihood-based approaches and can be fitted using Markov chain Monte Carlo (MCMC) simulation. The MCMC implementation, however, requires repeated inversions of the covariance matrix which makes the problem computationally intensive, especially for large number of locations. In the present work, we propose to convert the spatial covariance matrix to a sparse matrix and compare a number of numerical algorithms especially suited within the MCMC framework in order to accelerate large matrix inversion. The algorithms are assessed empirically on simulated datasets of different size and sparsity. We conclude that the band solver applied after ordering the distance matrix reduces the computational time in inverting covariance matrices substantially.  相似文献   

10.
We consider an adaptive importance sampling approach to estimating the marginal likelihood, a quantity that is fundamental in Bayesian model comparison and Bayesian model averaging. This approach is motivated by the difficulty of obtaining an accurate estimate through existing algorithms that use Markov chain Monte Carlo (MCMC) draws, where the draws are typically costly to obtain and highly correlated in high-dimensional settings. In contrast, we use the cross-entropy (CE) method, a versatile adaptive Monte Carlo algorithm originally developed for rare-event simulation. The main advantage of the importance sampling approach is that random samples can be obtained from some convenient density with little additional costs. As we are generating independent draws instead of correlated MCMC draws, the increase in simulation effort is much smaller should one wish to reduce the numerical standard error of the estimator. Moreover, the importance density derived via the CE method is grounded in information theory, and therefore, is in a well-defined sense optimal. We demonstrate the utility of the proposed approach by two empirical applications involving women's labor market participation and U.S. macroeconomic time series. In both applications, the proposed CE method compares favorably to existing estimators.  相似文献   

11.
This article focuses on simulation-based inference for the time-deformation models directed by a duration process. In order to better capture the heavy tail property of the time series of financial asset returns, the innovation of the observation equation is subsequently assumed to have a Student-t distribution. Suitable Markov chain Monte Carlo (MCMC) algorithms, which are hybrids of Gibbs and slice samplers, are proposed for estimation of the parameters of these models. In the algorithms, the parameters of the models can be sampled either directly from known distributions or through an efficient slice sampler. The states are simulated one at a time by using a Metropolis-Hastings method, where the proposal distributions are sampled through a slice sampler. Simulation studies conducted in this article suggest that our extended models and accompanying MCMC algorithms work well in terms of parameter estimation and volatility forecast.  相似文献   

12.
Markov chain Monte Carlo (MCMC) algorithms have been shown to be useful for estimation of complex item response theory (IRT) models. Although an MCMC algorithm can be very useful, it also requires care in use and interpretation of results. In particular, MCMC algorithms generally make extensive use of priors on model parameters. In this paper, MCMC estimation is illustrated using a simple mixture IRT model, a mixture Rasch model (MRM), to demonstrate how the algorithm operates and how results may be affected by some commonly used priors. Priors on the probabilities of mixtures, label switching, model selection, metric anchoring, and implementation of the MCMC algorithm using WinBUGS are described, and their effects illustrated on parameter recovery in practical testing situations. In addition, an example is presented in which an MRM is fitted to a set of educational test data using the MCMC algorithm and a comparison is illustrated with results from three existing maximum likelihood estimation methods.  相似文献   

13.
We propose two new procedures based on multiple hypothesis testing for correct support estimation in high‐dimensional sparse linear models. We conclusively prove that both procedures are powerful and do not require the sample size to be large. The first procedure tackles the atypical setting of ordered variable selection through an extension of a testing procedure previously developed in the context of a linear hypothesis. The second procedure is the main contribution of this paper. It enables data analysts to perform support estimation in the general high‐dimensional framework of non‐ordered variable selection. A thorough simulation study and applications to real datasets using the R package mht shows that our non‐ordered variable procedure produces excellent results in terms of correct support estimation as well as in terms of mean square errors and false discovery rate, when compared to common methods such as the Lasso, the SCAD penalty, forward regression or the false discovery rate procedure (FDR).  相似文献   

14.
We consider a class of adaptive MCMC algorithms using a Langevin-type proposal density. We state and prove regularity conditions for the convergence of these algorithms. In addition to these theoretical results we introduce a number of methodological innovations that can be applied much more generally. We assess the performance of these algorithms with simulation studies, including an example of the statistical analysis of a point process driven by a latent log-Gaussian Cox process.  相似文献   

15.
We introduce a new class of interacting Markov chain Monte Carlo (MCMC) algorithms which is designed to increase the efficiency of a modified multiple-try Metropolis (MTM) sampler. The extension with respect to the existing MCMC literature is twofold. First, the sampler proposed extends the basic MTM algorithm by allowing for different proposal distributions in the multiple-try generation step. Second, we exploit the different proposal distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the class of population Monte Carlo methods and builds connections with the rapidly expanding world of adaptive MCMC. We show the validity of the algorithm and discuss the choice of the selection weights and of the different proposals. The numerical studies show that the interaction mechanism allows the IMTM to efficiently explore the state space leading to higher efficiency than other competing algorithms.  相似文献   

16.
Most Markov chain Monte Carlo (MCMC) users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. Potentially useful diagnostics can be borrowed from diverse areas such as time series. One such method is phase randomization. This paper describes this method in the context of MCMC, summarizes its characteristics, and contrasts its performance with those of the more common diagnostic tests for MCMC. It is observed that the new tool contributes information about third‐ and higher‐order cumulant behaviour which is important in characterizing certain forms of nonlinearity and non‐stationarity.  相似文献   

17.
We study a Bayesian analysis of the proportional hazards model with time‐varying coefficients. We consider two priors for time‐varying coefficients – one based on B‐spline basis functions and the other based on Gamma processes – and we use a beta process prior for the baseline hazard functions. We show that the two priors provide optimal posterior convergence rates (up to the term) and that the Bayes factor is consistent for testing the assumption of the proportional hazards when the two priors are used for an alternative hypothesis. In addition, adaptive priors are considered for theoretical investigation, in which the smoothness of the true function is assumed to be unknown, and prior distributions are assigned based on B‐splines.  相似文献   

18.
Summary  In panel studies binary outcome measures together with time stationary and time varying explanatory variables are collected over time on the same individual. Therefore, a regression analysis for this type of data must allow for the correlation among the outcomes of an individual. The multivariate probit model of Ashford and Sowden (1970) was the first regression model for multivariate binary responses. However, a likelihood analysis of the multivariate probit model with general correlation structure for higher dimensions is intractable due to the maximization over high dimensional integrals thus severely restricting ist applicability so far. Czado (1996) developed a Markov Chain Monte Carlo (MCMC) algorithm to overcome this difficulty. In this paper we present an application of this algorithm to unemployment data from the Panel Study of Income Dynamics involving 11 waves of the panel study. In addition we adapt Bayesian model checking techniques based on the posterior predictive distribution (see for example Gelman et al. (1996)) for the multivariate probit model. These help to identify mean and correlation specification which fit the data well. C. Czado was supported by research grant OGP0089858 of the Natural Sciences and Engineering Research Council of Canada.  相似文献   

19.
Approximate Bayesian Inference for Survival Models   总被引:1,自引:0,他引:1  
Abstract. Bayesian analysis of time‐to‐event data, usually called survival analysis, has received increasing attention in the last years. In Cox‐type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC‐based inference.  相似文献   

20.
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号