首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper considers model averaging as a way to construct optimal instruments for the two‐stage least squares (2SLS), limited information maximum likelihood (LIML), and Fuller estimators in the presence of many instruments. We propose averaging across least squares predictions of the endogenous variables obtained from many different choices of instruments and then use the average predicted value of the endogenous variables in the estimation stage. The weights for averaging are chosen to minimize the asymptotic mean squared error of the model averaging version of the 2SLS, LIML, or Fuller estimator. This can be done by solving a standard quadratic programming problem.  相似文献   

2.
Properties of instrumental variable estimators are sensitive to the choice of valid instruments, even in large cross‐section applications. In this paper we address this problem by deriving simple mean‐square error criteria that can be minimized to choose the instrument set. We develop these criteria for two‐stage least squares (2SLS), limited information maximum likelihood (LIML), and a bias adjusted version of 2SLS (B2SLS). We give a theoretical derivation of the mean‐square error and show optimality. In Monte Carlo experiments we find that the instrument choice generally yields an improvement in performance. Also, in the Angrist and Krueger (1991) returns to education application, when the instrument set is chosen in the way we consider, it turns out that both 2SLS and LIML give similar (large) returns to education.  相似文献   

3.
In this paper we propose a new estimator for a model with one endogenous regressor and many instrumental variables. Our motivation comes from the recent literature on the poor properties of standard instrumental variables estimators when the instrumental variables are weakly correlated with the endogenous regressor. Our proposed estimator puts a random coefficients structure on the relation between the endogenous regressor and the instruments. The variance of the random coefficients is modelled as an unknown parameter. In addition to proposing a new estimator, our analysis yields new insights into the properties of the standard two‐stage least squares (TSLS) and limited‐information maximum likelihood (LIML) estimators in the case with many weak instruments. We show that in some interesting cases, TSLS and LIML can be approximated by maximizing the random effects likelihood subject to particular constraints. We show that statistics based on comparisons of the unconstrained estimates of these parameters to the implicit TSLS and LIML restrictions can be used to identify settings when standard large sample approximations to the distributions of TSLS and LIML are likely to perform poorly. We also show that with many weak instruments, LIML confidence intervals are likely to have under‐coverage, even though its finite sample distribution is approximately centered at the true value of the parameter. In an application with real data and simulations around this data set, the proposed estimator performs markedly better than TSLS and LIML, both in terms of coverage rate and in terms of risk.  相似文献   

4.
We develop a new specification test for IV estimators adopting a particular second order approximation of Bekker. The new specification test compares the difference of the forward (conventional) 2SLS estimator of the coefficient of the right‐hand side endogenous variable with the reverse 2SLS estimator of the same unknown parameter when the normalization is changed. Under the null hypothesis that conventional first order asymptotics provide a reliable guide to inference, the two estimates should be very similar. Our test sees whether the resulting difference in the two estimates satisfies the results of second order asymptotic theory. Essentially the same idea is applied to develop another new specification test using second‐order unbiased estimators of the type first proposed by Nagar. If the forward and reverse Nagar‐type estimators are not significantly different we recommend estimation by LIML, which we demonstrate is the optimal linear combination of the Nagar‐type estimators (to second order). We also demonstrate the high degree of similarity for k‐class estimators between the approach of Bekker and the Edgeworth expansion approach of Rothenberg. An empirical example and Monte Carlo evidence demonstrate the operation of the new specification test.  相似文献   

5.
We develop results for the use of Lasso and post‐Lasso methods to form first‐stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p. Our results apply even when p is much larger than the sample size, n. We show that the IV estimator based on using Lasso or post‐Lasso in the first stage is root‐n consistent and asymptotically normal when the first stage is approximately sparse, that is, when the conditional expectation of the endogenous variables given the instruments can be well‐approximated by a relatively small set of variables whose identities may be unknown. We also show that the estimator is semiparametrically efficient when the structural error is homoscedastic. Notably, our results allow for imperfect model selection, and do not rely upon the unrealistic “beta‐min” conditions that are widely used to establish validity of inference following model selection (see also Belloni, Chernozhukov, and Hansen (2011b)). In simulation experiments, the Lasso‐based IV estimator with a data‐driven penalty performs well compared to recently advocated many‐instrument robust procedures. In an empirical example dealing with the effect of judicial eminent domain decisions on economic outcomes, the Lasso‐based IV estimator outperforms an intuitive benchmark. Optimal instruments are conditional expectations. In developing the IV results, we establish a series of new results for Lasso and post‐Lasso estimators of nonparametric conditional expectation functions which are of independent theoretical and practical interest. We construct a modification of Lasso designed to deal with non‐Gaussian, heteroscedastic disturbances that uses a data‐weighted 1‐penalty function. By innovatively using moderate deviation theory for self‐normalized sums, we provide convergence rates for the resulting Lasso and post‐Lasso estimators that are as sharp as the corresponding rates in the homoscedastic Gaussian case under the condition that logp = o(n1/3). We also provide a data‐driven method for choosing the penalty level that must be specified in obtaining Lasso and post‐Lasso estimates and establish its asymptotic validity under non‐Gaussian, heteroscedastic disturbances.  相似文献   

6.
This paper presents a solution to an important econometric problem, namely the root n consistent estimation of nonlinear models with measurement errors in the explanatory variables, when one repeated observation of each mismeasured regressor is available. While a root n consistent estimator has been derived for polynomial specifications (see Hausman, Ichimura, Newey, and Powell (1991)), such an estimator for general nonlinear specifications has so far not been available. Using the additional information provided by the repeated observation, the suggested estimator separates the measurement error from the “true” value of the regressors thanks to a useful property of the Fourier transform: The Fourier transform converts the integral equations that relate the distribution of the unobserved “true” variables to the observed variables measured with error into algebraic equations. The solution to these equations yields enough information to identify arbitrary moments of the “true,” unobserved variables. The value of these moments can then be used to construct any estimator that can be written in terms of moments, including traditional linear and nonlinear least squares estimators, or general extremum estimators. The proposed estimator is shown to admit a representation in terms of an influence function, thus establishing its root n consistency and asymptotic normality. Monte Carlo evidence and an application to Engel curve estimation illustrate the usefulness of this new approach.  相似文献   

7.
In this paper we derive the asymptotic properties of within groups (WG), GMM, and LIML estimators for an autoregressive model with random effects when both T and N tend to infinity. GMM and LIML are consistent and asymptotically equivalent to the WG estimator. When T/N→ 0 the fixed T results for GMM and LIML remain valid, but WG, although consistent, has an asymptotic bias in its asymptotic distribution. When T/N tends to a positive constant, the WG, GMM, and LIML estimators exhibit negative asymptotic biases of order 1/T, 1/N, and 1/(2NT), respectively. In addition, the crude GMM estimator that neglects the autocorrelation in first differenced errors is inconsistent as T/Nc>0, despite being consistent for fixed T. Finally, we discuss the properties of a random effects pseudo MLE with unrestricted initial conditions when both T and N tend to infinity.  相似文献   

8.
Matching estimators for average treatment effects are widely used in evaluation research despite the fact that their large sample properties have not been established in many cases. The absence of formal results in this area may be partly due to the fact that standard asymptotic expansions do not apply to matching estimators with a fixed number of matches because such estimators are highly nonsmooth functionals of the data. In this article we develop new methods for analyzing the large sample properties of matching estimators and establish a number of new results. We focus on matching with replacement with a fixed number of matches. First, we show that matching estimators are not N1/2‐consistent in general and describe conditions under which matching estimators do attain N1/2‐consistency. Second, we show that even in settings where matching estimators are N1/2‐consistent, simple matching estimators with a fixed number of matches do not attain the semiparametric efficiency bound. Third, we provide a consistent estimator for the large sample variance that does not require consistent nonparametric estimation of unknown functions. Software for implementing these methods is available in Matlab, Stata, and R.  相似文献   

9.
We present a methodology for estimating the distributional effects of an endogenous treatment that varies at the group level when there are group‐level unobservables, a quantile extension of Hausman and Taylor, 1981. Because of the presence of group‐level unobservables, standard quantile regression techniques are inconsistent in our setting even if the treatment is independent of unobservables. In contrast, our estimation technique is consistent as well as computationally simple, consisting of group‐by‐group quantile regression followed by two‐stage least squares. Using the Bahadur representation of quantile estimators, we derive weak conditions on the growth of the number of observations per group that are sufficient for consistency and asymptotic zero‐mean normality of our estimator. As in Hausman and Taylor, 1981, micro‐level covariates can be used as internal instruments for the endogenous group‐level treatment if they satisfy relevance and exogeneity conditions. Our approach applies to a broad range of settings including labor, public finance, industrial organization, urban economics, and development; we illustrate its usefulness with several such examples. Finally, an empirical application of our estimator finds that low‐wage earners in the United States from 1990 to 2007 were significantly more affected by increased Chinese import competition than high‐wage earners.  相似文献   

10.
This paper proposes a new nested algorithm (NPL) for the estimation of a class of discrete Markov decision models and studies its statistical and computational properties. Our method is based on a representation of the solution of the dynamic programming problem in the space of conditional choice probabilities. When the NPL algorithm is initialized with consistent nonparametric estimates of conditional choice probabilities, successive iterations return a sequence of estimators of the structural parameters which we call K–stage policy iteration estimators. We show that the sequence includes as extreme cases a Hotz–Miller estimator (for K=1) and Rust's nested fixed point estimator (in the limit when K→∞). Furthermore, the asymptotic distribution of all the estimators in the sequence is the same and equal to that of the maximum likelihood estimator. We illustrate the performance of our method with several examples based on Rust's bus replacement model. Monte Carlo experiments reveal a trade–off between finite sample precision and computational cost in the sequence of policy iteration estimators.  相似文献   

11.
This paper provides a first order asymptotic theory for generalized method of moments (GMM) estimators when the number of moment conditions is allowed to increase with the sample size and the moment conditions may be weak. Examples in which these asymptotics are relevant include instrumental variable (IV) estimation with many (possibly weak or uninformed) instruments and some panel data models that cover moderate time spans and have correspondingly large numbers of instruments. Under certain regularity conditions, the GMM estimators are shown to converge in probability but not necessarily to the true parameter, and conditions for consistent GMM estimation are given. A general framework for the GMM limit distribution theory is developed based on epiconvergence methods. Some illustrations are provided, including consistent GMM estimation of a panel model with time varying individual effects, consistent limited information maximum likelihood estimation as a continuously updated GMM estimator, and consistent IV structural estimation using large numbers of weak or irrelevant instruments. Some simulations are reported.  相似文献   

12.
This paper examines the efficient estimation of partially identified models defined by moment inequalities that are convex in the parameter of interest. In such a setting, the identified set is itself convex and hence fully characterized by its support function. We provide conditions under which, despite being an infinite dimensional parameter, the support function admits √n‐consistent regular estimators. A semiparametric efficiency bound is then derived for its estimation, and it is shown that any regular estimator attaining it must also minimize a wide class of asymptotic loss functions. In addition, we show that the “plug‐in” estimator is efficient, and devise a consistent bootstrap procedure for estimating its limiting distribution. The setting we examine is related to an incomplete linear model studied in Beresteanu and Molinari (2008) and Bontemps, Magnac, and Maurin (2012), which further enables us to establish the semiparametric efficiency of their proposed estimators for that problem.  相似文献   

13.
This paper establishes that instruments enable the identification of nonparametric regression models in the presence of measurement error by providing a closed form solution for the regression function in terms of Fourier transforms of conditional expectations of observable variables. For parametrically specified regression functions, we propose a root n consistent and asymptotically normal estimator that takes the familiar form of a generalized method of moments estimator with a plugged‐in nonparametric kernel density estimate. Both the identification and the estimation methodologies rely on Fourier analysis and on the theory of generalized functions. The finite‐sample properties of the estimator are investigated through Monte Carlo simulations.  相似文献   

14.
We consider semiparametric estimation of the memory parameter in a model that includes as special cases both long‐memory stochastic volatility and fractionally integrated exponential GARCH (FIEGARCH) models. Under our general model the logarithms of the squared returns can be decomposed into the sum of a long‐memory signal and a white noise. We consider periodogram‐based estimators using a local Whittle criterion function. We allow the optional inclusion of an additional term to account for possible correlation between the signal and noise processes, as would occur in the FIEGARCH model. We also allow for potential nonstationarity in volatility by allowing the signal process to have a memory parameter d*1/2. We show that the local Whittle estimator is consistent for d*∈(0,1). We also show that the local Whittle estimator is asymptotically normal for d*∈(0,3/4) and essentially recovers the optimal semiparametric rate of convergence for this problem. In particular, if the spectral density of the short‐memory component of the signal is sufficiently smooth, a convergence rate of n2/5−δ for d*∈(0,3/4) can be attained, where n is the sample size and δ>0 is arbitrarily small. This represents a strong improvement over the performance of existing semiparametric estimators of persistence in volatility. We also prove that the standard Gaussian semiparametric estimator is asymptotically normal if d*=0. This yields a test for long memory in volatility.  相似文献   

15.
In this paper, we propose a simple bias–reduced log–periodogram regression estimator, ^dr, of the long–memory parameter, d, that eliminates the first– and higher–order biases of the Geweke and Porter–Hudak (1983) (GPH) estimator. The bias–reduced estimator is the same as the GPH estimator except that one includes frequencies to the power 2k for k=1,…,r, for some positive integer r, as additional regressors in the pseudo–regression model that yields the GPH estimator. The reduction in bias is obtained using assumptions on the spectrum only in a neighborhood of the zero frequency. Following the work of Robinson (1995b) and Hurvich, Deo, and Brodsky (1998), we establish the asymptotic bias, variance, and mean–squared error (MSE) of ^dr, determine the asymptotic MSE optimal choice of the number of frequencies, m, to include in the regression, and establish the asymptotic normality of ^dr. These results show that the bias of ^dr goes to zero at a faster rate than that of the GPH estimator when the normalized spectrum at zero is sufficiently smooth, but that its variance only is increased by a multiplicative constant. We show that the bias–reduced estimator ^dr attains the optimal rate of convergence for a class of spectral densities that includes those that are smooth of order s≥1 at zero when r≥(s−2)/2 and m is chosen appropriately. For s>2, the GPH estimator does not attain this rate. The proof uses results of Giraitis, Robinson, and Samarov (1997). We specify a data–dependent plug–in method for selecting the number of frequencies m to minimize asymptotic MSE for a given value of r. Some Monte Carlo simulation results for stationary Gaussian ARFIMA (1, d, 1) and (2, d, 0) models show that the bias–reduced estimators perform well relative to the standard log–periodogram regression estimator.  相似文献   

16.
In econometrics, models stated as conditional moment restrictions are typically estimated by means of the generalized method of moments (GMM). The GMM estimation procedure can render inconsistent estimates since the number of arbitrarily chosen instruments is finite. In fact, consistency of the GMM estimators relies on additional assumptions that imply unclear restrictions on the data generating process. This article introduces a new, simple and consistent estimation procedure for these models that is directly based on the definition of the conditional moments. The main feature of our procedure is its simplicity, since its implementation does not require the selection of any user‐chosen number, and statistical inference is straightforward since the proposed estimator is asymptotically normal. In addition, we suggest an asymptotically efficient estimator constructed by carrying out one Newton–Raphson step in the direction of the efficient GMM estimator.  相似文献   

17.
I introduce a model of undirected dyadic link formation which allows for assortative matching on observed agent characteristics (homophily) as well as unrestricted agent‐level heterogeneity in link surplus (degree heterogeneity). Like in fixed effects panel data analyses, the joint distribution of observed and unobserved agent‐level characteristics is left unrestricted. Two estimators for the (common) homophily parameter, β0, are developed and their properties studied under an asymptotic sequence involving a single network growing large. The first, tetrad logit (TL), estimator conditions on a sufficient statistic for the degree heterogeneity. The second, joint maximum likelihood (JML), estimator treats the degree heterogeneity {Ai0}i = 1N as additional (incidental) parameters to be estimated. The TL estimate is consistent under both sparse and dense graph sequences, whereas consistency of the JML estimate is shown only under dense graph sequences.  相似文献   

18.
This paper considers regression models for cross‐section data that exhibit cross‐section dependence due to common shocks, such as macroeconomic shocks. The paper analyzes the properties of least squares (LS) estimators in this context. The results of the paper allow for any form of cross‐section dependence and heterogeneity across population units. The probability limits of the LS estimators are determined, and necessary and sufficient conditions are given for consistency. The asymptotic distributions of the estimators are found to be mixed normal after recentering and scaling. The t, Wald, and F statistics are found to have asymptotic standard normal, χ2, and scaled χ2 distributions, respectively, under the null hypothesis when the conditions required for consistency of the parameter under test hold. However, the absolute values of t, Wald, and F statistics are found to diverge to infinity under the null hypothesis when these conditions fail. Confidence intervals exhibit similarly dichotomous behavior. Hence, common shocks are found to be innocuous in some circumstances, but quite problematic in others. Models with factor structures for errors and regressors are considered. Using the general results, conditions are determined under which consistency of the LS estimators holds and fails in models with factor structures. The results are extended to cover heterogeneous and functional factor structures in which common factors have different impacts on different population units.  相似文献   

19.
The conventional heteroskedasticity‐robust (HR) variance matrix estimator for cross‐sectional regression (with or without a degrees‐of‐freedom adjustment), applied to the fixed‐effects estimator for panel data with serially uncorrelated errors, is inconsistent if the number of time periods T is fixed (and greater than 2) as the number of entities n increases. We provide a bias‐adjusted HR estimator that is ‐consistent under any sequences (n, T) in which n and/or T increase to ∞. This estimator can be extended to handle serial correlation of fixed order.  相似文献   

20.
We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n‐1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号