首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Armand Maul 《Risk analysis》2014,34(9):1606-1617
Microbial risk assessment is dependent on several biological and environmental factors that affect both the exposure characteristics to the biological agents and the mechanisms of pathogenicity involved in the pathogen‐host relationship. Many exposure assessment studies still focus on the location parameters of the probability distribution representing the concentration of the pathogens and/or toxin. However, the mean or median by themselves are insufficient to evaluate the adverse effects that are associated with a given level of exposure. Therefore, the effects on the risk of disease of a number of factors, including the shape parameters characterizing the distribution patterns of the pathogen in their environment, were investigated. The statistical models, which were developed to provide a better understanding of the factors influencing the risk, highlight the role of heterogeneity and its consequences on the commonly used risk assessment paradigm. Indeed, the heterogeneity characterizing the spatial and temporal distribution of the pathogen and/or the toxin contained in the water or food consumed is shown to be a major factor that may influence the magnitude of the risk dramatically. In general, the risk diminishes with higher levels of heterogeneity. This scheme is totally inverted in the presence of a threshold in the dose‐response relationship, since heterogeneity will then have a tremendous impact, namely, by magnifying the risk when the mean concentration of pathogens is below the threshold. Moreover, the approach of this article may be useful for risk ranking analysis, regarding different exposure conditions, and may also lead to improved water and food quality guidelines.  相似文献   

2.
An ecological risk assessment framework for low-altitude aircraft overflights was developed, with special emphasis on military applications. The problem formulation and exposure analysis phases are presented in this article; an analysis of effects and risk characterization is presented in a companion article. The intent of this article is threefold: (1) to illustrate the development of a generic framework for the ecological risk assessment of an activity, (2) to show how the U.S. Environmental Protection Agency's ecological risk assessment paradigm can be applied to an activity other than the release of a chemical, and (3) to provide guidance for the assessment of ecological risks from low-altitude aircraft overflights. The key stressor for low-altitude aircraft overflights is usually sound, although visual and physical (collision) stressors may also be significant. Susceptible and regulated wildlife populations are the major assessment endpoint entities, although plant communities may be impacted by takeoffs and landings. The exposure analysis utilizes measurements of wildlife locations, measurements of sound levels at the wildlife locations, measurements of slant distances from aircraft to wildlife, models that extrapolate sound from the source aircraft to the ground, and bird-strike probability models. Some of the challenges to conducting a risk assessment for aircraft overflights include prioritizing potential stressors and endpoints, choosing exposure metrics that relate to wildlife responses, obtaining good estimates of sound or distance, and estimating wildlife locations.  相似文献   

3.
4.
Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano‐functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano‐functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo‐catalytic exterior paint (nano‐scale TiO2), antimicrobial food packaging (nano‐scale Ag), and particulate‐reducing diesel fuel additives (nano‐scale CeO2). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure‐ and risk‐ranking methods may be redefined on a quantitative basis.  相似文献   

5.
Legionnaires' disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the genus Legionella, and most frequently by L. pneumophila (Lp). Subsequent research on exposure to the organism employed various animal models, and with quantitative microbial risk assessment (QMRA) techniques, the animal model data may provide insights on human dose-response for LD. This article focuses on the rationale for selection of the guinea pig model, comparison of the dose-response model results, comparison of projected low-dose responses for guinea pigs, and risk estimates for humans. Based on both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected for modeling human risk. We completed dose-response modeling for the beta-Poisson (approximate and exact), exponential, probit, logistic, and Weibull models for Lp inhalation, mortality, and infection (end point elevated body temperature) in guinea pigs. For mechanistic reasons, including low-dose exposure probability, further work on human risk estimates for LD employed the exponential and beta-Poisson models. With an exposure of 10 colony-forming units (CFU) (retained dose), the QMRA model predicted a mild infection risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and supportive care) risk of 0.0009. The calculated rates based on estimated human exposures for outbreaks used for the QMRA model validation are within an order of magnitude of the reported LD rates. These validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension to human risk projections were appropriate.  相似文献   

6.
We conducted a regional‐scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN‐RRM) to a case study of the South River, Virginia mercury‐contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor–multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN‐RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape.  相似文献   

7.
The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity ( Qinf ) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Qinf is extremely small (median = 6.5 × 10−12 ID50; mean = 1.8 × 10−4 ID50), corresponding to an average probability of 1.3 × 10−4 that an incident results in ≥1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号