首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ABSTRACT

In this article, the unit root test for the AR(1) model is discussed, under the condition that the innovations of the model are in the domain of attraction of the normal law with possibly infinite variances. By using residual bootstrap with sample size m < n (n being the size of the original sample), we bootstrap the least-squares estimator of the autoregressive parameter. Under some mild assumptions, we prove that the null distribution of the unit root test statistic based on the least-square estimator of the autoregressive parameter can be approximated by using residual bootstrap.  相似文献   

2.
Traditional resampling methods for estimating sampling distributions sometimes fail, and alternative approaches are then needed. For example, if the classical central limit theorem does not hold and the naïve bootstrap fails, the m/n bootstrap, based on smaller-sized resamples, may be used as an alternative. An alternative to the naïve bootstrap, the sufficient bootstrap, which uses only the distinct observations in a bootstrap sample, is another recently proposed bootstrap approach that has been suggested to reduce the computational burden associated with bootstrapping. It works as long as naïve bootstrap does. However, if the naïve bootstrap fails, so will the sufficient bootstrap. In this paper, we propose combining the sufficient bootstrap with the m/n bootstrap in order to both regain consistent estimation of sampling distributions and to reduce the computational burden of the bootstrap. We obtain necessary and sufficient conditions for asymptotic normality of the proposed method, and propose new values for the resample size m. We compare the proposed method with the naïve bootstrap, the sufficient bootstrap, and the m/n bootstrap by simulation.  相似文献   

3.
This article considers fixed effects (FE) estimation for linear panel data models under possible model misspecification when both the number of individuals, n, and the number of time periods, T, are large. We first clarify the probability limit of the FE estimator and argue that this probability limit can be regarded as a pseudo-true parameter. We then establish the asymptotic distributional properties of the FE estimator around the pseudo-true parameter when n and T jointly go to infinity. Notably, we show that the FE estimator suffers from the incidental parameters bias of which the top order is O(T? 1), and even after the incidental parameters bias is completely removed, the rate of convergence of the FE estimator depends on the degree of model misspecification and is either (nT)? 1/2 or n? 1/2. Second, we establish asymptotically valid inference on the (pseudo-true) parameter. Specifically, we derive the asymptotic properties of the clustered covariance matrix (CCM) estimator and the cross-section bootstrap, and show that they are robust to model misspecification. This establishes a rigorous theoretical ground for the use of the CCM estimator and the cross-section bootstrap when model misspecification and the incidental parameters bias (in the coefficient estimate) are present. We conduct Monte Carlo simulations to evaluate the finite sample performance of the estimators and inference methods, together with a simple application to the unemployment dynamics in the U.S.  相似文献   

4.
The traditional non-parametric bootstrap (referred to as the n-out-of-n bootstrap) is a widely applicable and powerful tool for statistical inference, but in important situations it can fail. It is well known that by using a bootstrap sample of size m, different from n, the resulting m-out-of-n bootstrap provides a method for rectifying the traditional bootstrap inconsistency. Moreover, recent studies have shown that interesting cases exist where it is better to use the m-out-of-n bootstrap in spite of the fact that the n-out-of-n bootstrap works. In this paper, we discuss another case by considering its application to hypothesis testing. Two new data-based choices of m are proposed in this set-up. The results of simulation studies are presented to provide empirical comparisons between the performance of the traditional bootstrap and the m-out-of-n bootstrap, based on the two data-dependent choices of m, as well as on an existing method in the literature for choosing m. These results show that the m-out-of-n bootstrap, based on our choice of m, generally outperforms the traditional bootstrap procedure as well as the procedure based on the choice of m proposed in the literature.  相似文献   

5.
6.
The estimation of a multivariate function from a stationary m-dependent process is investigated, with a special focus on the case where m is large or unbounded. We develop an adaptive estimator based on wavelet methods. Under flexible assumptions on the nonparametric model, we prove the good performances of our estimator by determining sharp rates of convergence under two kinds of errors: the pointwise mean squared error and the mean integrated squared error. We illustrate our theoretical result by considering the multivariate density estimation problem, the derivatives density estimation problem, the density estimation problem in a GARCH-type model and the multivariate regression function estimation problem. The performance of proposed estimator has been shown by a numerical study for a simulated and real data sets.  相似文献   

7.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.  相似文献   

8.
Inference concerning the negative binomial dispersion parameter, denoted by c, is important in many biological and biomedical investigations. Properties of the maximum-likelihood estimator of c and its bias-corrected version have been studied extensively, mainly, in terms of bias and efficiency [W.W. Piegorsch, Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46 (1990), pp. 863–867; S.J. Clark and J.N. Perry, Estimation of the negative binomial parameter κ by maximum quasi-likelihood, Biometrics 45 (1989), pp. 309–316; K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185]. However, not much work has been done on the construction of confidence intervals (C.I.s) for c. The purpose of this paper is to study the behaviour of some C.I. procedures for c. We study, by simulations, three Wald type C.I. procedures based on the asymptotic distribution of the method of moments estimate (mme), the maximum-likelihood estimate (mle) and the bias-corrected mle (bcmle) [K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185] of c. All three methods show serious under-coverage. We further study parametric bootstrap procedures based on these estimates of c, which significantly improve the coverage probabilities. The bootstrap C.I.s based on the mle (Boot-MLE method) and the bcmle (Boot-BCM method) have coverages that are significantly better (empirical coverage close to the nominal coverage) than the corresponding bootstrap C.I. based on the mme, especially for small sample size and highly over-dispersed data. However, simulation results on lengths of the C.I.s show evidence that all three bootstrap procedures have larger average coverage lengths. Therefore, for practical data analysis, the bootstrap C.I. Boot-MLE or Boot-BCM should be used, although Boot-MLE method seems to be preferable over the Boot-BCM method in terms of both coverage and length. Furthermore, Boot-MLE needs less computation than Boot-BCM.  相似文献   

9.
The paper considers the problem of testing for symmetry (about an unknown centre) of the marginal distribution of a strictly stationary and weakly dependent stochastic process. The possibility of using the autoregressive sieve bootstrap and stationary bootstrap procedures to obtain critical values and P-values for symmetry tests is explored. Bootstrap-assisted tests for symmetry are straightforward to implement and require no prior estimation of asymptotic variances. The small-sample properties of a wide variety of tests are investigated using Monte Carlo experiments. A bootstrap-assisted version of the triples test is found to have the best overall performance.  相似文献   

10.
This paper is concerned with ranked set sampling theory which is useful to estimate the population mean when the order of a sample of small size can be found without measurements or with rough methods. Consider n sets of elements each set having size m. All elements of each set are ranked but only one is selected and quantified. The average of the quantified elements is adopted as the estimator. In this paper we introduce the notion of selective probability which is a generalization of a notion from Yanagawa and Shirahata (1976). Uniformly optimal unbiased procedures are found for some (n,m). Furthermore, procedures which are unbiased for all distributions and are good for symmetric distributions are studied for (n,m) which do not allow uniformly optimal unbiased procedures.  相似文献   

11.
We investigate the construction of a BCa-type bootstrap procedure for setting approximate prediction intervals for an efficient estimator θm of a scalar parameter θ, based on a future sample of size m. The results are also extended to nonparametric situations, which can be used to form bootstrap prediction intervals for a large class of statistics. These intervals are transformation-respecting and range-preserving. The asymptotic performance of our procedure is assessed by allowing both the past and future sample sizes to tend to infinity. The resulting intervals are then shown to be second-order correct and second-order accurate. These second-order properties are established in terms of min(m, n), and not the past sample size n alone.  相似文献   

12.
The relative 'performances of improved ridge estimators and an empirical Bayes estimator are studied by means of Monte Carlo simulations. The empirical Bayes method is seen to perform consistently better in terms of smaller MSE and more accurate empirical coverage than any of the estimators considered here. A bootstrap method is proposed to obtain more reliable estimates of the MSE of ridge esimators. Some theorems on the bootstrap for the ridge estimators are also given and they are used to provide an analytical understanding of the proposed bootstrap procedure. Empirical coverages of the ridge estimators based on the proposed procedure are generally closer to the nominal coverage when compared to their earlier counterparts. In general, except for a few cases, these coverages are still less accurate than the empirical coverages of the empirical Bayes estimator.  相似文献   

13.
This paper develops a bootstrap hypothesis test for the existence of finite moments of a random variable, which is nonparametric and applicable to both independent and dependent data. The test is based on a property in bootstrap asymptotic theory, in which the m out of n bootstrap sample mean is asymptotically normal when the variance of the observations is finite. Consistency of the test is established. Monte Carlo simulations are conducted to illustrate the finite sample performance and compare it with alternative methods available in the literature. Applications to financial data are performed for illustration.  相似文献   

14.
Abstract.  Conventional bootstrap- t intervals for density functions based on kernel density estimators exhibit poor coverages due to failure of the bootstrap to estimate the bias correctly. The problem can be resolved by either estimating the bias explicitly or undersmoothing the kernel density estimate to undermine its bias asymptotically. The resulting bias-corrected intervals have an optimal coverage error of order arbitrarily close to second order for a sufficiently smooth density function. We investigated the effects on coverage error of both bias-corrected intervals when the nominal coverage level is calibrated by the iterated bootstrap. In either case, an asymptotic reduction of coverage error is possible provided that the bias terms are handled using an extra round of smoothed bootstrapping. Under appropriate smoothness conditions, the optimal coverage error of the iterated bootstrap- t intervals has order arbitrarily close to third order. Examples of both simulated and real data are reported to illustrate the iterated bootstrap procedures.  相似文献   

15.
Goodness-of-fit tests for the uniform distribution based on sums of smooth functions of m-spacings are studied. A limiting sum-of-weighted-chi-squareds approximation is shown to be accurate uniformly in m for the special cases of analogues of Greenwoo?s statistic and Moran's statistic. Asymptotic critical points are provided; theory and Monte Carlo studies show they are accurate for all m provided n is moderately large.  相似文献   

16.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

17.
S. Huet 《Statistics》2015,49(2):239-266
We propose a procedure to test that the expectation of a Gaussian vector is linear against a nonparametric alternative. We consider the case where the covariance matrix of the observations has a block diagonal structure. This framework encompasses regression models with autocorrelated errors, heteroscedastic regression models, mixed-effects models and growth curves. Our procedure does not depend on any prior information about the alternative. We prove that the test is asymptotically of the nominal level and consistent. We characterize the set of vectors on which the test is powerful and prove the classical √log log (n)/n convergence rate over directional alternatives. We propose a bootstrap version of the test as an alternative to the initial one and provide a simulation study in order to evaluate both procedures for small sample sizes when the purpose is to test goodness of fit in a Gaussian mixed-effects model. Finally, we illustrate the procedures using a real data set.  相似文献   

18.
We propose a new approach to the selection of partially linear models based on the conditional expected prediction square loss function, which is estimated using the bootstrap. Because of the different speeds of convergence of the linear and the nonlinear parts, a key idea is to select each part separately. In the first step, we select the nonlinear components using an ' m -out-of- n ' residual bootstrap that ensures good properties for the nonparametric bootstrap estimator. The second step selects the linear components from the remaining explanatory variables, and the non-zero parameters are selected based on a two-level residual bootstrap. We show that the model selection procedure is consistent under some conditions, and our simulations suggest that it selects the true model most often than the other selection procedures considered.  相似文献   

19.
Several procedures have been proposed for testing the equality of error distributions in two or more nonparametric regression models. Here we deal with methods based on comparing estimators of the cumulative distribution function (CDF) of the errors in each population to an estimator of the common CDF under the null hypothesis. The null distribution of the associated test statistics has been approximated by means of a smooth bootstrap (SB) estimator. This paper proposes to approximate their null distribution through a weighted bootstrap. It is shown that it produces a consistent estimator. The finite sample performance of this approximation is assessed by means of a simulation study, where it is also compared to the SB. This study reveals that, from a computational point of view, the proposed approximation is more efficient than the one provided by the SB.  相似文献   

20.
In an empirical Bayes decision problem, a simple class of estimators is constructed that dominate the James-Stein

estimator, A prior distribution A is placed on a restricted (normal) class G of priors to produce a Bayes empirical Bayes estimator, The Bayes empirical Bayes estimator is smooth, admissible, and asymptotically optimal. For certain A rate of convergence to minimum Bayes risk is 0(n-1)uniformly on G. The results of a Monte Carlo study are presented to demonstrate the favorable risk bebhavior of the Bayes estimator In comparison with other competitors including the James-Stein estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号