首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zero-inflated binomial (ZIB) regression model was proposed to account for excess zeros in binomial regression. Since then, the model has been applied in various fields, such as ecology and epidemiology. In these applications, maximum-likelihood estimation (MLE) is used to derive parameter estimates. However, theoretical properties of the MLE in ZIB regression have not yet been rigorously established. The current paper fills this gap and thus provides a rigorous basis for applying the model. Consistency and asymptotic normality of the MLE in ZIB regression are proved. A consistent estimator of the asymptotic variance–covariance matrix of the MLE is also provided. Finite-sample behavior of the estimator is assessed via simulations. Finally, an analysis of a data set in the field of health economics illustrates the paper.  相似文献   

2.
Relative risks are often considered preferable to odds ratios for quantifying the association between a predictor and a binary outcome. Relative risk regression is an alternative to logistic regression where the parameters are relative risks rather than odds ratios. It uses a log link binomial generalised linear model, or log‐binomial model, which requires parameter constraints to prevent probabilities from exceeding 1. This leads to numerical problems with standard approaches for finding the maximum likelihood estimate (MLE), such as Fisher scoring, and has motivated various non‐MLE approaches. In this paper we discuss the roles of the MLE and its main competitors for relative risk regression. It is argued that reliable alternatives to Fisher scoring mean that numerical issues are no longer a motivation for non‐MLE methods. Nonetheless, non‐MLE methods may be worthwhile for other reasons and we evaluate this possibility for alternatives within a class of quasi‐likelihood methods. The MLE obtained using a reliable computational method is recommended, but this approach requires bootstrapping when estimates are on the parameter space boundary. If convenience is paramount, then quasi‐likelihood estimation can be a good alternative, although parameter constraints may be violated. Sensitivity to model misspecification and outliers is also discussed along with recommendations and priorities for future research.  相似文献   

3.
Nonignorable nonresponse is a nonresponse mechanism that depends on the values of the variable having nonresponse. When an observed data of a binomial distribution suffer missing values from a nonignorable nonresponse mechanism, the binomial distribution parameters become unidentifiable without any other auxiliary information or assumption. To address the problems of non identifiability, existing methods mostly based on the log-linear regression model. In this article, we focus on the model when the nonresponse is nonignorable and we consider to use the auxiliary data to improve identifiability; furthermore, we derive the maximum likelihood estimator (MLE) for the binomial proportion and its associated variance. We present results for an analysis of real-life data from the SARS study in China. Finally, the simulation study shows that the proposed method gives promising results.  相似文献   

4.
The logistic regression model is used when the response variables are dichotomous. In the presence of multicollinearity, the variance of the maximum likelihood estimator (MLE) becomes inflated. The Liu estimator for the linear regression model is proposed by Liu to remedy this problem. Urgan and Tez and Mansson et al. examined the Liu estimator (LE) for the logistic regression model. We introduced the restricted Liu estimator (RLE) for the logistic regression model. Moreover, a Monte Carlo simulation study is conducted for comparing the performances of the MLE, restricted maximum likelihood estimator (RMLE), LE, and RLE for the logistic regression model.  相似文献   

5.
The beta-binomial model has been widely used as an analytically tractable alternative that captures the overdispersion of an intra-correlated, binomial random variable, X. However, the model validation for X has been rarely investigated. As a beta-binomial mass function takes on a few different shapes, the model validation is examined for each of the classified shapes in this article. Further, the mean square error (MSE) is illustrated for each shape by the maximum likelihood estimator (MLE) based on a beta-binomial model approach and the method of moments estimator (MME) in order to gauge when and how much the MLE is biased.  相似文献   

6.
Abstract.  We propose and study a class of regression models, in which the mean function is specified parametrically as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.  相似文献   

7.
In binomial or multinomial problems when the parameter space is restricted or truncated to a subset of the natural parameter space, the maximum likelihood estimator (MLE) may be inadmissible under squared error loss. A quite general condition for the inadmissibility of MLEs in such cases can be established using the stepwise Bayes technique and the complete class theorem of Brown.  相似文献   

8.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

9.
Overdispersion has been a common phenomenon in count data and usually treated with the negative binomial model. This paper shows that measurement errors in covariates in general also lead to overdispersion on the observed data if the true data generating process is indeed the Poisson regression. This kind of overdispersion cannot be treated using the negative binomial model, as otherwise, biases will occur. To provide consistent estimates, we propose a new type of corrected score estimator assuming that the distribution of the latent variables is known. The consistency and asymptotic normality of the proposed estimator are established. Simulation results show that this estimator has good finite sample performance. We also illustrate that the Akaike information criterion and Bayesian information criterion work well for selecting the correct model if the true model is the errors-in-variables Poisson regression.  相似文献   

10.
In this study, estimation of the parameters of the zero-inflated count regression models and computations of posterior model probabilities of the log-linear models defined for each zero-inflated count regression models are investigated from the Bayesian point of view. In addition, determinations of the most suitable log-linear and regression models are investigated. It is known that zero-inflated count regression models cover zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated generalized Poisson regression models. The classical approach has some problematic points but the Bayesian approach does not have similar flaws. This work points out the reasons for using the Bayesian approach. It also lists advantages and disadvantages of the classical and Bayesian approaches. As an application, a zoological data set, including structural and sampling zeros, is used in the presence of extra zeros. In this work, it is observed that fitting a zero-inflated negative binomial regression model creates no problems at all, even though it is known that fitting a zero-inflated negative binomial regression model is the most problematic procedure in the classical approach. Additionally, it is found that the best fitting model is the log-linear model under the negative binomial regression model, which does not include three-way interactions of factors.  相似文献   

11.
Negative binomial regression is a standard model to analyze hypoglycemic events in diabetes clinical trials. Adjusting for baseline covariates could potentially increase the estimation efficiency of negative binomial regression. However, adjusting for covariates raises concerns about model misspecification, in which the negative binomial regression is not robust because of its requirement for strong model assumptions. In some literature, it was suggested to correct the standard error of the maximum likelihood estimator through introducing overdispersion, which can be estimated by the Deviance or Pearson Chi‐square. We proposed to conduct the negative binomial regression using Sandwich estimation to calculate the covariance matrix of the parameter estimates together with Pearson overdispersion correction (denoted by NBSP). In this research, we compared several commonly used negative binomial model options with our proposed NBSP. Simulations and real data analyses showed that NBSP is the most robust to model misspecification, and the estimation efficiency will be improved by adjusting for baseline hypoglycemia. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we examine estimation of Aalen's nonparametric regression coefficients based on doubly censored data. We propose two estimation techniques. The first type of estimators, including ordinary least squared (OLS) estimator and weighted least squared (WLS) estimators, are obtained using martingale arguments. The second type of estimator, the maximum likelihood estimator (MLE), is obtained via expectation-maximization (EM) algorithms that treat the survival times of left censored observations as missing. Asymptotic properties, including the uniform consistency and weak convergence, are established for the MLE. Simulation results demonstrate that the MLE is more efficient than the OLS and WLS estimators.  相似文献   

13.
This paper addresses the admissibility of the maximum-likelihood estimator (MLE) of the variance of a binomial distribution with parameters n and p under squared-error loss. We show that the MLE is admissible for n ≤ 5 and inadmissible for n≥ 6.  相似文献   

14.
We investigate several estimators of the negative binomial (NB) dispersion parameter for highly stratified count data for which the statistical model has a separate mean parameter for each stratum. If the number of samples per stratum is small then the model is highly parameterized and the maximum likelihood estimator (MLE) of the NB dispersion parameter can be biased and inefficient. Some of the estimators we investigate include adjustments for the number of mean parameters to reduce bias. We extend other estimators that were developed for the iid case, to reduce bias when there are many mean parameters. We demonstrate using simulations that an adjusted double extended quasi-likelihood estimator we proposed gives much improved estimates compared to the MLE. Adjusted extended quasi-likelihood and adjusted maximum likelihood estimators also give much-improved results. We illustrate the various estimators with stratified random bottom trawl survey data for cod (Gadus morhua) off the south coast of Newfoundland, Canada.  相似文献   

15.
In this article, the zero-one inflated binomial mixed regression is proposed to model proportional data with large frequencies of both zeros and binomial denominators. Score tests for assessing both extra zeros and extra binomial denominators in proportional data are developed. The empirical levels and empirical powers of the score test statistics are evaluated using a simulation study. Finally, the application of the proposed model is illustrated on the whitefly data.  相似文献   

16.
In the parametric regression model, the covariate missing problem under missing at random is considered. It is often desirable to use flexible parametric or semiparametric models for the covariate distribution, which can reduce a potential misspecification problem. Recently, a completely nonparametric approach was developed by [H.Y. Chen, Nonparametric and semiparametric models for missing covariates in parameter regression, J. Amer. Statist. Assoc. 99 (2004), pp. 1176–1189; Z. Zhang and H.E. Rockette, On maximum likelihood estimation in parametric regression with missing covariates, J. Statist. Plann. Inference 47 (2005), pp. 206–223]. Although it does not require a model for the covariate distribution or the missing data mechanism, the proposed method assumes that the covariate distribution is supported only by observed values. Consequently, their estimator is a restricted maximum likelihood estimator (MLE) rather than the global MLE. In this article, we show the restricted semiparametric MLE could be very misleading in some cases. We discuss why this problem occurs and suggest an algorithm to obtain the global MLE. Then, we assess the performance of the proposed method via some simulation experiments.  相似文献   

17.
The bivariate negative binomial regression (BNBR) and the bivariate Poisson log-normal regression (BPLR) models have been used to describe count data that are over-dispersed. In this paper, a new bivariate generalized Poisson regression (BGPR) model is defined. An advantage of the new regression model over the BNBR and BPLR models is that the BGPR can be used to model bivariate count data with either over-dispersion or under-dispersion. In this paper, we carry out a simulation study to compare the three regression models when the true data-generating process exhibits over-dispersion. In the simulation experiment, we observe that the bivariate generalized Poisson regression model performs better than the bivariate negative binomial regression model and the BPLR model.  相似文献   

18.
Recent small sample studies of estimators for the shape parameter a of the negative binomial distribution (NBD) tend to indicate that the choice of estimator can be reduced to a choice between the method of moments estimator, maximum likelihood estimator (MLE), maximum quasi-likelihood estimator and the conditional likelihood estimator (CLE). In this paper the results of a comprehensive simulation study are reported to assist with the choice from these four estimators. The study includes a traditional procedure for assessing estimators for the shape parameter of the NBD and in addition introduces an alternative assessment procedure. Based on the traditional approach the CLE is considered to perform the best overall for the range of parameter values and sample sizes considered. The alternative assessment procedure indicates that the MLE is the preferred estimator.  相似文献   

19.
Summary. The maximum likelihood estimator (MLE) for the proportional hazards model with partly interval-censored data is studied. Under appropriate regularity conditions, the MLEs of the regression parameter and the cumulative hazard function are shown to be consistent and asymptotically normal. Two methods to estimate the variance–covariance matrix of the MLE of the regression parameter are considered, based on a generalized missing information principle and on a generalized profile information procedure. Simulation studies show that both methods work well in terms of the bias and variance for samples of moderate size. An example illustrates the methods.  相似文献   

20.
The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号