首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Under progressive Type-II censoring, inference of stress-strength reliability (SSR) is studied for a general family of lower truncated distributions. When the lifetime models of the strength and stress variables have arbitrary and common parameters, maximum likelihood and pivotal quantities based generalized estimators of SSR are established, respectively. Confidence intervals are constructed based on generalized pivotal quantities and bootstrap technique under different parameter cases as well. In addition, to compare the equivalence of the strength and stress parameters, likelihood ratio testing of interested parameters is provided as a complementary. Simulation studies and two real-life data examples are provided to investigate the performance of proposed methods.  相似文献   

2.
The stress–strength model has attracted a great deal of attention in reliability analysis, and it has been studied under various modeling assumptions. In this article, the stress–strength reliability is studied for both single unit and multicomponent systems when stress and strength distributions are of phase type. Phase-type distributions, besides their analytical tractability, are a versatile tool for modeling a wide range of real life systems/processes. In particular, matrix-based expressions are obtained for the stress–strength reliability, and mean residual strength for an operating system. The results are illustrated for Erlang-type stress–strength distributions for a single unit system and a system having a general coherent structure. An example on the comparison of two multi-state units in stress–strength ordering is also presented.  相似文献   

3.
This paper presents the extension of the inferences on the stress-strength reliability in more than two states to the system depending on the ratio of the strength and stress values when the stress and strength follow independent exponential distributions. The main objective of present paper is to consider different method of estimation, under Type II censoring, for the stress-strength models and to compare them, in more than two states, to the system depending on the ratio of the strength and stress values, when the stress and strength follow independent Weibull distributions, sharing the common shape parameter α.  相似文献   

4.
In this paper, based on progressively Type-II censored samples, the problem of estimation of multicomponent stress–strength reliability under generalized half-normal (GHN) distribution is considered. The reliability of a k-component stress-strength system is estimated when both stress and strength variates are assumed to have a GHN distribution with various cases of same and different shape and scale parameters. Different methods such as the maximum likelihood estimates (MLEs) and Bayes estimation are discussed. The expectation maximization algorithm and approximate maximum likelihood methods are proposed to compute the MLE of reliability. The Lindley's approximation method, as well as Metropolis–Hastings algorithm, are applied to compute Bayes estimates. The performance of the proposed procedures is also demonstrated via a Monte Carlo simulation study and an illustrative example.  相似文献   

5.
In this research article, we estimate the multicomponent stress–strength reliability of a system when strength and stress variates are drawn from an exponentiated Weibull distribution with different shape parameters α?and?β, and common shape and scale parameters γ and λ, respectively. We estimate the parameters by using maximum likelihood estimation (MLE) and hence the estimate of reliability obtained applying the MLE method of estimation when samples are drawn from stress and strength distributions. The small sample comparison of the reliability estimates is made through Monte Carlo simulation.  相似文献   

6.
In an attempt to produce more realistic stress–strength models, this article considers the estimation of stress–strength reliability in a multi-component system with non-identical component strengths based on upper record values from the family of Kumaraswamy generalized distributions. The maximum likelihood estimator of the reliability, its asymptotic distribution and asymptotic confidence intervals are constructed. Bayes estimates under symmetric squared error loss function using conjugate prior distributions are computed and corresponding highest probability density credible intervals are also constructed. In Bayesian estimation, Lindley approximation and the Markov Chain Monte Carlo method are employed due to lack of explicit forms. For the first time using records, the uniformly minimum variance unbiased estimator and the closed form of Bayes estimator using conjugate and non-informative priors are derived for a common and known shape parameter of the stress and strength variates distributions. Comparisons of the performance of the estimators are carried out using Monte Carlo simulations, the mean squared error, bias and coverage probabilities. Finally, a demonstration is presented on how the proposed model may be utilized in materials science and engineering with the analysis of high-strength steel fatigue life data.  相似文献   

7.
In this article, we present characterizations, associated with the stress?strength reliability, of distributions with some general exponential and general inverse exponential forms. We obtain a general form for stress?strength reliability, when the distributions of the stress and the strength are non identical and independently distributed with either form. We obtain different point and interval estimators of stress?strength reliability. The theoretical results obtained can be directly applied whenever the distributions of the stress and the strength possess the forms discussed. A simulation study is carried out showing satisfactory performance of the estimators obtained. Moreover, a real data example is presented.  相似文献   

8.
The weighted distributions provide a comprehensive understanding by adding flexibility in the existing standard distributions. In this article, we considered the weighted Lindley distribution which belongs to the class of the weighted distributions and investigated various its properties. Although, our main focus is the Bayesian analysis however, stochastic ordering, the Bonferroni and the Lorenz curves, various entropies and order statistics derivations are obtained first time for the said distribution. Different types of loss functions are considered; the Bayes estimators and their respective posterior risks are computed and compared. The different reliability characteristics including hazard function, stress and strength analysis, and mean residual life function are also analysed. The Lindley approximation and the importance sampling are described for estimation of parameters. A simulation study is designed to inspect the effect of sample size on the estimated parameters. A real-life application is also presented for the illustration purpose.  相似文献   

9.
In this paper, inference for a multicomponent stress–strength model is studied. When latent strength and stress random variables follow a bathtub-shaped distribution and the failure times are Type-II censored, the maximum likelihood estimate of the multicomponent stress–strength reliability (MSR) is established when there are common strength and stress parameters. Approximate confidence interval is also constructed by using the asymptotic distribution theory and delta method. Furthermore, another alternative generalized point and confidence interval estimators for the MSR are constructed based on pivotal quantities. Moreover, the likelihood and the pivotal quantities-based estimates for the MSR are also provided under unequal strength and stress parameter case. To compare the equivalence of the stress and strength parameters, the likelihood ratio test for hypothesis of interest is also provided. Finally, simulation studies and a real data example are given for illustration.  相似文献   

10.
This article deals with the Bayesian and non Bayesian estimation of multicomponent stress–strength reliability by assuming the Kumaraswamy distribution. Both stress and strength are assumed to have a Kumaraswamy distribution with common and known shape parameter. The reliability of such a system is obtained by the methods of maximum likelihood and Bayesian approach and the results are compared using Markov Chain Monte Carlo (MCMC) technique for both small and large samples. Finally, two data sets are analyzed for illustrative purposes.  相似文献   

11.
Reliability function is defined under suitable assumptions for dynamic stress–strength scenarios where strength degrades and stress accumulates over time. Methods for numerical evaluation of reliability are suggested under deterministic strength degradation and cumulative damage due to shocks arriving according to a point process, in particular a Poisson process, using simulation method and inversion theorem. These methods are specifically useful in the scenarios where damage distributions do not possess closure property under convolution. The method is also extended for non-identical, dependent damage distributions as well as for random strength degradation. Results from inversion method is compared with known approximate methods and also verified by simulation. As it turns out, the simulation method seems to have an edge in terms of computational burden and has much wider domain of applicability.  相似文献   

12.
A consecutive k-out-of-n: G system consists of n linearly ordered components functions if and only if at least k consecutive components function. In this article we investigate the consecutive k-out-of-n: G system in a setup of multicomponent stress-strength model. Under this setup, a system consists of n components functions if and only if there are at least k consecutive components survive a common random stress. We consider reliability and its estimation of such a system whenever there is a change and no change in strength. We provide minimum variance unbiased estimation of system reliability when the stress and strength distributions are exponential with unknown scale parameters. A nonparametric minimum variance unbiased estimator is also provided.  相似文献   

13.
Abstract

In this article, we obtain point and interval estimates of multicomponent stress-strength reliability model of an s-out-of-j system using classical and Bayesian approaches by assuming both stress and strength variables follow a Chen distribution with a common shape parameter which may be known or unknown. The uniformly minimum variance unbiased estimator of reliability is obtained analytically when the common parameter is known. The behavior of proposed reliability estimates is studied using the estimated risks through Monte Carlo simulations and comments are obtained. Finally, a data set is analyzed for illustrative purposes.  相似文献   

14.
In this article, we consider the applications of Marshall–Olkin Fréchet distribution. The reliability of a system when both stress and strength follows the new distribution is discussed and related characteristics are computed for simulated data. The model is applied to a real data set on failure times of air-conditioning systems in jet planes and reliability is estimated. We also develop acceptance sampling plan for the acceptance of a lot whose lifetime follows this distribution. Four different autoregressive time series models of order 1 are developed with minification structure as well as max-min structure having these stationary marginal distributions. Some properties of the models are also established.  相似文献   

15.
In this paper, the reliability of a system is discussed when the strength of the system and the stress imposed on it are independent, non-identical exponentiated Pareto distributed random variables. Different point estimations and interval estimations are proposed. The point estimators obtained are maximum likelihood, uniformly minimum variance unbiased and Bayesian estimators. The interval estimations obtained are approximate, exact, bootstrap-p and bootstrap-t confidence intervals and Bayesian credible interval. Different methods and the corresponding confidence intervals are compared using Monte-carlo simulations.  相似文献   

16.
This paper considers the estimation of the stress–strength reliability of a multi-state component or of a multi-state system where its states depend on the ratio of the strength and stress variables through a kernel function. The article presents a Bayesian approach assuming the stress and strength as exponentially distributed with a common location parameter but different scale parameters. We show that the limits of the Bayes estimators of both location and scale parameters under suitable priors are the maximum likelihood estimators as given by Ghosh and Razmpour [15 M. Ghosh and A. Razmpour, Estimation of the common location parameter of several exponentials, Sankhyā, Ser. A 46 (1984), pp. 383394. [Google Scholar]]. We use the Bayes estimators to determine the multi-state stress–strength reliability of a system having states between 0 and 1. We derive the uniformly minimum variance unbiased estimators of the reliability function. Interval estimation using the bootstrap method is also considered. Under the squared error loss function and linex loss function, risk comparison of the reliability estimators is carried out using extensive simulations.  相似文献   

17.
In many industrial and natural phenomena, we need the probability that a component is smaller than the other component. Under a stress–strength model, this is reliability of an item. Under independent setup, there are different approaches for the estimation of such reliability. Here, estimation is considered under the dependent case. Under bi-variate setup uniformly minimum variance unbiased estimator is obtained. Also comparison with available estimator based on Maximum Likelihood Estimate (MLE) is done through Mean Square Error (MSE) and bias. Also these are compared by computing L1 distance between their distribution functions. From this idea and numerical computations, UMVUE appears to be good.  相似文献   

18.
In this article, the estimation problem of the multicomponent stress–strength reliability parameter is considered where the stress and the strength systems have arbitrary fixed numbers of independent and non-identical parallel components. It is assumed that the distribution functions of the stress and the strength components satisfy the proportional reversed hazard rate model. The study is done in more details when the baseline distributions are exponential. Maximum likelihood and uniformly minimum variance unbiased estimators are obtained and compared. Also, Bayes and empirical Bayes estimators are discussed and Monte Carlo simulations are carried out to compare their performances.  相似文献   

19.
The problem of making statistical inference about θ =P(X > Y) has been under great investigation in the literature using simple random sampling (SRS) data. This problem arises naturally in the area of reliability for a system with strength X and stress Y. In this study, we will consider making statistical inference about θ using ranked set sampling (RSS) data. Several estimators are proposed to estimate θ using RSS. The properties of these estimators are investigated and compared with known estimators based on simple random sample (SRS) data. The proposed estimators based on RSS dominate those based on SRS. A motivated example using real data set is given to illustrate the computation of the newly suggested estimators.  相似文献   

20.
In the big data era, it is often needed to resolve the problem of parsimonious data representation. In this paper, the data under study are curves and the sparse representation is based on a semiparametric model. Indeed, we propose an original registration model for noisy curves. The model is built transforming an unknown function by plane similarities. We develop a statistical method that allows to estimate the parameters characterizing the plane similarities. The properties of the statistical procedure are studied. We show the convergence and the asymptotic normality of the estimators. Numerical simulations and a real-life aeronautic example illustrate and demonstrate the strength of our methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号