首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a density estimator in the bivariate uniform deconvolution model. For this model, we derive four inversion formulas to express the bivariate density that we want to estimate in terms of the bivariate density of the observations. By substituting a kernel density estimator of the density of the observations, we then obtain four different estimators. Next we construct an asymptotically optimal convex combination of these four estimators. Expansions for the bias, variance, as well as asymptotic normality are derived. Some simulated examples are presented.  相似文献   

2.
Suppose we have n observations from X = Y + Z, where Z is a noise component with known distribution, and Y has an unknown density f. When the characteristic function of Z is nonzero almost everywhere, we show that it is possible to construct a density estimate fn such that for all f, Iimn| |=0.  相似文献   

3.
In this article, we propose a class of partial deconvolution kernel estimators for the nonparametric regression function when some covariates are measured with error and some are not. The estimation procedure combines the classical kernel methodology and the deconvolution kernel technique. According to whether the measurement error is ordinarily smooth or supersmooth, we establish the optimal local and global convergence rates for these proposed estimators, and the optimal bandwidths are also identified. Furthermore, lower bounds for the convergence rates of all possible estimators for the nonparametric regression functions are developed. It is shown that, in both the super and ordinarily smooth cases, the convergence rates of the proposed partial deconvolution kernel estimators attain the lower bound. The Canadian Journal of Statistics 48: 535–560; 2020 © 2020 Statistical Society of Canada  相似文献   

4.
The authors consider the problem of estimating the density g of independent and identically distributed variables XI, from a sample Z1,… Zn such that ZI = XI + σ? for i = 1,…, n, and E is noise independent of X, with σ? having a known distribution. They present a model selection procedure allowing one to construct an adaptive estimator of g and to find nonasymptotic risk bounds. The estimator achieves the minimax rate of convergence, in most cases where lower bounds are available. A simulation study gives an illustration of the good practical performance of the method.  相似文献   

5.
Suppose that ? is a Gaussian density and that g = f * ?, where * denotes convolution. From observations with density g, one wishes to estimate f. We analyze an estimate which is a linear combination of estimates of derivatives of g and show that this estimate converges in an L2 norm at a rate which is compatible with the pointwise optimal rate established by Fan (1991).  相似文献   

6.
The author studies the effect of a misspecification of the error density on the mean integrated squared error (MISE) of the deconvolution estimator. He shows that the MISE converges to a certain functional which he defines. He also illustrates the fact that the limit can sometimes be infinite. Finally, he derives some guidelines for selecting the error density in order to ensure robustness properties of the procedure.  相似文献   

7.
The problem of nonparametric estimation of a probability density function when the sample observations are contaminated with random noise is studied. A particular estimator f?n(x) is proposed which uses kernel-density and deconvolution techniques. The estimator f?n(x) is shown to be uniformly consistent, and its appearance and properties are affected by constants Mn and hn which the user may choose. The optimal choices of Mn and hn depend on the sample size n, the noise distribution, and the true distribution which is being estimated. Particular selections for Mn and hn which minimize upper-bound functions of the mean squared error for f?n(x) are recommended.  相似文献   

8.
This paper addresses the problem of estimating the mode of a density function based on contaminated data. Unlike conventional methods, which are based on localizing the maximum of a density estimator, we introduce a procedure which requires computation of the maximum among finitely many quantities only. We show that our estimator is strongly consistent under very weak conditions, where not even continuity of the density at the mode is required; moreover, we show that the estimator achieves optimal convergence rates under common smoothness and sharpness constraints. Some numerical simulations are provided.  相似文献   

9.
When cubic smoothing splines are used to estimate the conditional quantile function, thereby balancing fidelity to the data with a smoothness requirement, the resulting curve is the solution to a quadratic program. Using this quadratic characterization and through comparison with the sample conditional quan-tiles, we show strong consistency and asymptotic normality for the quantile smoothing spline.  相似文献   

10.
Constructing spatial density maps of seismic events, such as earthquake hypocentres, is complicated by the fact that events are not located precisely. In this paper, we present a method for estimating density maps from event locations that are measured with error. The estimator is based on the simulation–extrapolation method of estimation and is appropriate for location errors that are either homoscedastic or heteroscedastic. A simulation study shows that the estimator outperforms the standard estimator of density that ignores location errors in the data, even when location errors are spatially dependent. We apply our method to construct an estimated density map of earthquake hypocenters using data from the Alaska earthquake catalogue.  相似文献   

11.
We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil [1994. On the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504–1512]. We study the properties of these estimators and compare them with Rosenblatt's nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt's kernel estimator rather than any recursive estimator. A contrario, for estimation by confidence intervals, it is better to use a recursive estimator rather than Rosenblatt's estimator.  相似文献   

12.
Bagai and Prakasa Rao [Analysis of survival data with two dependent competing risks. Biometr J. 1992;7:801–814] considered a competing risks model with two dependent risks. The two risks are initially independent but dependence arises because of the additive effect of an independent risk on the two initially independent risks. They showed that the ratio of failure rates are identifiable in the nonparametric set-up. In this paper, we consider it as a measurement error/deconvolution problem and suggest a nonparametric kernel-type estimator for the ratio of two failure rates. The local error properties of the proposed estimator are studied. Simulation studies show the efficacy of the proposed estimator.  相似文献   

13.
The procedure of statistical discrimination Is simple in theory but so simple in practice. An observation x0possibly uiultivariate, is to be classified into one of several populations π1,…,πk which have respectively, the density functions f1(x), ? ? ? , fk(x). The decision procedure is to evaluate each density function at X0 to see which function gives the largest value fi(X0) , and then to declare that X0 belongs to the population corresponding to the largest value. If these den-sities can be assumed to be normal with equal covariance matricesthen the decision procedure is known as Fisher’s linear discrimi-nant function (LDF) method. In the case of unequal covariance matrices the procedure is called the quadratic discriminant func-tion (QDF) method. If the densities cannot be assumed to be nor-mal then the LDF and QDF might not perform well. Several different procedures have appeared in the literature which offer discriminant procedures for nonnormal data. However, these pro-cedures are generally difficult to use and are not readily available as canned statistical programs.

Another approach to discriminant analysis is to use some sortof mathematical trans format ion on the samples so that their distribution function is approximately normal, and then use the convenient LDF and QDF methods. One transformation that:applies to all distributions equally well is the rank transformation. The result of this transformation is that a very simple and easy to use procedure is made available. This procedure is quite robust as is evidenced by comparisons of the rank transform results with several published simulation studies.  相似文献   

14.
Nonparametric density estimation in the presence of measurement error is considered. The usual kernel deconvolution estimator seeks to account for the contamination in the data by employing a modified kernel. In this paper a new approach based on a weighted kernel density estimator is proposed. Theoretical motivation is provided by the existence of a weight vector that perfectly counteracts the bias in density estimation without generating an excessive increase in variance. In practice a data driven method of weight selection is required. Our strategy is to minimize the discrepancy between a standard kernel estimate from the contaminated data on the one hand, and the convolution of the weighted deconvolution estimate with the measurement error density on the other hand. We consider a direct implementation of this approach, in which the weights are optimized subject to sum and non-negativity constraints, and a regularized version in which the objective function includes a ridge-type penalty. Numerical tests suggest that the weighted kernel estimation can lead to tangible improvements in performance over the usual kernel deconvolution estimator. Furthermore, weighted kernel estimates are free from the problem of negative estimation in the tails that can occur when using modified kernels. The weighted kernel approach generalizes to the case of multivariate deconvolution density estimation in a very straightforward manner.  相似文献   

15.
The Expectation–Maximization (EM) algorithm is a very popular technique for maximum likelihood estimation in incomplete data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used. Under very general conditions, the authors have shown that the attractive stationary points of the SAEM algorithm correspond to the global and local maxima of the observed likelihood. In order to avoid convergence towards a local maxima, a simulated annealing version of SAEM is proposed. An illustrative application to the convolution model for estimating the coefficients of the filter is given.  相似文献   

16.
17.
We consider the maximum likelihood estimator $\hat{F}_n$ of a distribution function in a class of deconvolution models where the known density of the noise variable is of bounded variation. This class of noise densities contains in particular bounded, decreasing densities. The estimator $\hat{F}_n$ is defined, characterized in terms of Fenchel optimality conditions and computed. Under appropriate conditions, various consistency results for $\hat{F}_n$ are derived, including uniform strong consistency. The Canadian Journal of Statistics 41: 98–110; 2013 © 2012 Statistical Society of Canada  相似文献   

18.
A fixed-point method is proposed for calculating quantiles of the sample mean for a saddlepoint approximation. We show that this method has fast convergence rate and can be extended to more general statistics. Examples are given to show the accuracy of the approximation.  相似文献   

19.
In earlier work, Kirchner [An estimation procedure for the Hawkes process. Quant Financ. 2017;17(4):571–595], we introduced a nonparametric estimation method for the Hawkes point process. In this paper, we present a simulation study that compares this specific nonparametric method to maximum-likelihood estimation. We find that the standard deviations of both estimation methods decrease as power-laws in the sample size. Moreover, the standard deviations are proportional. For example, for a specific Hawkes model, the standard deviation of the branching coefficient estimate is roughly 20% larger than for MLE – over all sample sizes considered. This factor becomes smaller when the true underlying branching coefficient becomes larger. In terms of runtime, our method clearly outperforms MLE. The present bias of our method can be well explained and controlled. As an incidental finding, we see that also MLE estimates seem to be significantly biased when the underlying Hawkes model is near criticality. This asks for a more rigorous analysis of the Hawkes likelihood and its optimization.  相似文献   

20.
This article introduces a method of nonparametric bivariate density estimation based on a bivariate sample level crossing function, which leads to the construction of a bivariate level crossing empirical distribution function (BLCEDF). An efficiency function for this BLCEDF relative to the classical empirical distribution function (EDF), is derived. The BLCEDF gives more efficient estimates than the EDF in the tails of any underlying continuous distribution, for both small and large sample sizes. On the basis of BLCEDF we define a bivariate level crossing kernel density estimator (BLCKDE) and study its properties. We apply the BLCEDF and BLCKDE for various distributions and provide results of simulations that confirm the theoretical properties. A real-world example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号