首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified bootstrap estimator of the population mean is proposed which is a convex combination of the sample mean and sample median, where the weights are random quantities. The estimator is shown to be strongly consistent and asymptotically normally distributed. The small- and moderate-sample-size behavior of the estimator is investigated and compared with that of the sample mean by means of Monte Carlo studies. It is found that the newly proposed estimator has much smaller mean squared errors and also yields significantly shorter confidence intervals for the population mean.  相似文献   

2.
In this article, we propose a new technique for constructing confidence intervals for the mean of a noisy sequence with multiple change-points. We use the weighted bootstrap to generalize the bootstrap aggregating or bagging estimator. A standard deviation formula for the bagging estimator is introduced, based on which smoothed confidence intervals are constructed. To further improve the performance of the smoothed interval for weak signals, we suggest a strategy of adaptively choosing between the percentile intervals and the smoothed intervals. A new intensity plot is proposed to visualize the pattern of the change-points. We also propose a new change-point estimator based on the intensity plot, which has superior performance in comparison with the state-of-the-art segmentation methods. The finite sample performance of the confidence intervals and the change-point estimator are evaluated through Monte Carlo studies and illustrated with a real data example.  相似文献   

3.
If the power spectral density of a continuous time stationary stochastic process is not limited to a finite bandwidth, data sampled from that process at any uniform sampling rate leads to biased and inconsistent spectrum estimators, which are unsuitable for constructing confidence intervals. In this paper, we use the smoothed periodogram estimator to construct asymptotic confidence intervals shrinking to the true spectra, by allowing the sampling rate to go to infinity suitably fast as the sample size goes to infinity. The proposed method requires minimal computation, as it does not involve bootstrap or other resampling. The method is illustrated through a Monte-Carlo simulation study, and its performance is compared with that of the corresponding method based on uniform sampling at a fixed rate.  相似文献   

4.
We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross-validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small-sample properties compared to the bootstrap intervals. A small-sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10.  相似文献   

5.
Zhuqing Yu 《Statistics》2017,51(2):277-293
It has been found, under a smooth function model setting, that the n out of n bootstrap is inconsistent at stationary points of the smooth function, but that the m out of n bootstrap is consistent, provided that a correct convergence rate is specified of the plug-in smooth function estimator. By considering a more general moving-parameter framework, we show that neither of the above bootstrap methods is consistent uniformly over neighbourhoods of stationary points, so that anomalies often arise of coverages of bootstrap sets over certain subsets of parameter values. We propose a recentred bootstrap procedure for constructing confidence sets with uniformly correct coverages over compact sets containing stationary points. A weighted bootstrap procedure is also proposed as an alternative under more general circumstances. Unlike the m out of n bootstrap, both procedures do not require knowledge of the convergence rate of the smooth function estimator. Empirical performance of our procedures is illustrated with numerical examples.  相似文献   

6.
In this article we introduce an approximately unbiased estimator for the population coefficient of variation, τ, in a normal distribution. The accuracy of this estimator is examined by several criteria. Using this estimator and its variance, two approximate confidence intervals for τ are introduced. The performance of the new confidence intervals is compared to those obtained by current methods.  相似文献   

7.
The periodic multiplicative intensity model is considered. A new bootstrap method for non stationary counting processes which intensity function has some periodicity properties is presented. Its main advantage is that it does not destroy the temporal order and the original periodicity of the underlying counting process. The proposed algorithm is used to construct a bootstrap version of the maximum likelihood hazard function estimator. The consistency of the bootstrap method is shown. A possible modification of the proposed bootstrap method is discussed. The bootstrap simultaneous confidence intervals for the hazard function are presented. The telecommunication network traffic real data example is discussed.  相似文献   

8.

We consider a sieve bootstrap procedure to quantify the estimation uncertainty of long-memory parameters in stationary functional time series. We use a semiparametric local Whittle estimator to estimate the long-memory parameter. In the local Whittle estimator, discrete Fourier transform and periodogram are constructed from the first set of principal component scores via a functional principal component analysis. The sieve bootstrap procedure uses a general vector autoregressive representation of the estimated principal component scores. It generates bootstrap replicates that adequately mimic the dependence structure of the underlying stationary process. We first compute the estimated first set of principal component scores for each bootstrap replicate and then apply the semiparametric local Whittle estimator to estimate the memory parameter. By taking quantiles of the estimated memory parameters from these bootstrap replicates, we can nonparametrically construct confidence intervals of the long-memory parameter. As measured by coverage probability differences between the empirical and nominal coverage probabilities at three levels of significance, we demonstrate the advantage of using the sieve bootstrap compared to the asymptotic confidence intervals based on normality.

  相似文献   

9.
We investigate the finite sample properties of the estimator of a persistence parameter of an unobservable common factor when the factor is estimated by the principal components method. When the number of cross-sectional observations is not sufficiently large, relative to the number of time series observations, the autoregressive coefficient estimator of a positively autocorrelated factor is biased downward, and the bias becomes larger for a more persistent factor. Based on theoretical and simulation analyses, we show that bootstrap procedures are effective in reducing the bias, and bootstrap confidence intervals outperform naive asymptotic confidence intervals in terms of the coverage probability.  相似文献   

10.
Dong Wan Shin 《Statistics》2015,49(1):209-223
Stationary bootstrapping is applied to panel cointegration tests which are based on the ordinary least-squares estimator and the seemingly unrelated regression (SUR) estimator of the residual unit root. Large sample validity of stationary bootstrapping is established. A finite sample experiment reveals that size performances of the bootstrap tests are much less sensitive to cross-sectional correlation than those of existing tests and a test based on the SUR estimator has substantially better power than existing tests.  相似文献   

11.
This article deals with the estimation of the parametric component, which is of primary interest, in the heteroscedastic semi-varying coefficient models. Based on the bootstrap technique, we present a procedure for estimating the parameters, which can provide a reliable approximation to the asymptotic distribution of the profile least-square (PLS) estimator. Furthermore, a bootstrap-type estimator of covariance matrix is developed, which is proved to be a consistent estimator of the covariance matrix. Moreover, some simulation experiments are conducted to evaluate the finite sample performance for the proposed methodology. Finally, the Australia CPI dataset is analyzed to demonstrate the application of the methods.  相似文献   

12.
This article is concerned with inference for the parameter vector in stationary time series models based on the frequency domain maximum likelihood estimator. The traditional method consistently estimates the asymptotic covariance matrix of the parameter estimator and usually assumes the independence of the innovation process. For dependent innovations, the asymptotic covariance matrix of the estimator depends on the fourth‐order cumulants of the unobserved innovation process, a consistent estimation of which is a difficult task. In this article, we propose a novel self‐normalization‐based approach to constructing a confidence region for the parameter vector in such models. The proposed procedure involves no smoothing parameter, and is widely applicable to a large class of long/short memory time series models with weakly dependent innovations. In simulation studies, we demonstrate favourable finite sample performance of our method in comparison with the traditional method and a residual block bootstrap approach.  相似文献   

13.
The primary goal of this paper is to examine the small sample coverage probability and size of jackknife confidence intervals centered at a Stein-rule estimator. A Monte Carlo experiment is used to explore the coverage probabilities and lengths of nominal 90% and 95% delete-one and infinitesimal jackknife confidence intervals centered at the Stein-rule estimator; these are compared to those obtained using a bootstrap procedure.  相似文献   

14.
《Econometric Reviews》2008,27(1):139-162
The quality of the asymptotic normality of realized volatility can be poor if sampling does not occur at very high frequencies. In this article we consider an alternative approximation to the finite sample distribution of realized volatility based on Edgeworth expansions. In particular, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions. The Monte Carlo study we conduct shows that the intervals based on the Edgeworth corrections have improved properties relatively to the conventional intervals based on the normal approximation. Contrary to the bootstrap, the Edgeworth approach is an analytical approach that is easily implemented, without requiring any resampling of one's data. A comparison between the bootstrap and the Edgeworth expansion shows that the bootstrap outperforms the Edgeworth corrected intervals. Thus, if we are willing to incur in the additional computational cost involved in computing bootstrap intervals, these are preferred over the Edgeworth intervals. Nevertheless, if we are not willing to incur in this additional cost, our results suggest that Edgeworth corrected intervals should replace the conventional intervals based on the first order normal approximation.  相似文献   

15.
In this article, we consider a semivarying coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to semivarying coefficient longitudinal data model, and prove a nonparametric version of Wilks' theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.  相似文献   

16.
The authors study the application of the bootstrap to a class of estimators which converge at a nonstandard rate to a nonstandard distribution. They provide a theoretical framework to study its asymptotic behaviour. A simulation study shows that in the case of an estimator such as Chernoff's estimator of the mode, usually the basic bootstrap confidence intervals drastically undercover while the percentile bootstrap intervals overcover. This is a rare instance where basic and percentile confidence intervals, which have exactly the same length, behave in a very different way. In the case of Chernoff's estimator, if the distribution is symmetric, it is possible to bootstrap from a smooth symmetric estimator of the distribution for which the basic bootstrap confidence intervals will have the claimed coverage probability while the percentile bootstrap interval will have an asymptotic coverage of 1!  相似文献   

17.
The quality of the asymptotic normality of realized volatility can be poor if sampling does not occur at very high frequencies. In this article we consider an alternative approximation to the finite sample distribution of realized volatility based on Edgeworth expansions. In particular, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions. The Monte Carlo study we conduct shows that the intervals based on the Edgeworth corrections have improved properties relatively to the conventional intervals based on the normal approximation. Contrary to the bootstrap, the Edgeworth approach is an analytical approach that is easily implemented, without requiring any resampling of one's data. A comparison between the bootstrap and the Edgeworth expansion shows that the bootstrap outperforms the Edgeworth corrected intervals. Thus, if we are willing to incur in the additional computational cost involved in computing bootstrap intervals, these are preferred over the Edgeworth intervals. Nevertheless, if we are not willing to incur in this additional cost, our results suggest that Edgeworth corrected intervals should replace the conventional intervals based on the first order normal approximation.  相似文献   

18.
Empirical Bayes approaches have often been applied to the problem of estimating small-area parameters. As a compromise between synthetic and direct survey estimators, an estimator based on an empirical Bayes procedure is not subject to the large bias that is sometimes associated with a synthetic estimator, nor is it as variable as a direct survey estimator. Although the point estimates perform very well, naïve empirical Bayes confidence intervals tend to be too short to attain the desired coverage probability, since they fail to incorporate the uncertainty which results from having to estimate the prior distribution. Several alternative methodologies for interval estimation which correct for the deficiencies associated with the naïve approach have been suggested. Laird and Louis (1987) proposed three types of bootstrap for correcting naïve empirical Bayes confidence intervals. Calling the methodology of Laird and Louis (1987) an unconditional bias-corrected naïve approach, Carlin and Gelfand (1991) suggested a modification to the Type III parametric bootstrap which corrects for bias in the naïve intervals by conditioning on the data. Here we empirically evaluate the Type II and Type III bootstrap proposed by Laird and Louis, as well as the modification suggested by Carlin and Gelfand (1991), with the objective of examining coverage properties of empirical Bayes confidence intervals for small-area proportions.  相似文献   

19.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

20.
Stute (1993, Consistent estimation under random censorship when covariables are present. Journal of Multivariate Analysis 45, 89–103) proposed a new method to estimate regression models with a censored response variable using least squares and showed the consistency and asymptotic normality for his estimator. This article proposes a new bootstrap-based methodology that improves the performance of the asymptotic interval estimation for the small sample size case. Therefore, we compare the behavior of Stute's asymptotic confidence interval with that of several confidence intervals that are based on resampling bootstrap techniques. In order to build these confidence intervals, we propose a new bootstrap resampling method that has been adapted for the case of censored regression models. We use simulations to study the improvement the performance of the proposed bootstrap-based confidence intervals show when compared to the asymptotic proposal. Simulation results indicate that, for the new proposals, coverage percentages are closer to the nominal values and, in addition, intervals are narrower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号