共查询到20条相似文献,搜索用时 11 毫秒
1.
Abhik Ghosh 《Journal of applied statistics》2015,42(9):2056-2072
The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data. 相似文献
2.
This paper studies methods for simple estimation of the exponential mean parameter in small samples in the presence of outliers. Existing estimation methods are discussed. Adaptation of these methods to allow for Type I censoring is investigated. New robust procedures are proposed. A series of simulation experiments Indicate trimming provides significant protection against outliers while the premium is usually small when trimming uncontarninated samples. A linearly weighted mean is recommended for uncontarninated samples, both censored and complete. In larger samples, (n - 20), the proposed Huber-type estimator performs quite well in all situations of censoring and contarnination 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(5):503-512
In this paper, we study the robust estimation for the order of hidden Markov model (HMM) based on a penalized minimum density power divergence estimator, which is obtained by utilizing the finite mixture marginal distribution of HMM. For this task, we adopt the locally conic parametrization method used in [D. Dacunha-Castelle and E. Gassiate, Testing in locally conic models and application to mixture models. ESAIM Probab. Stat. (1997), pp. 285–317; D. Dacunha-Castelle and E. Gassiate, Testing the order of a model using locally conic parametrization: population mixtures and stationary arma processes, Ann. Statist. 27 (1999), pp. 1178–1209; T. Lee and S. Lee, Robust and consistent estimation of the order of finite mixture models based on the minimizing a density power divergence estimator, Metrika 68 (2008), pp. 365–390] to avoid the difficulties that arise in handling mixture marginal models, such as the non-identifiability of the parameter space and the singularity problem with the asymptotic variance. We verify that the estimated order is consistent and simulation results are provided for illustration. 相似文献
4.
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(2-4):97-119
Estimation in the presence of censoring is an important problem. In the linear model, the Buckley-James method proceeds iteratively by estimating the censored values than re-estimating the regression coeffi- cients. A large-scale Monte Carlo simulation technique has been developed to test the performance of the Buckley-James (denoted B-J) estimator. One hundred and seventy two randomly generated data sets, each with three thousand replications, based on four failure distributions, four censoring patterns, three sample sizes and four censoring rates have been investigated, and the results are presented. It is found that, except for Type I1 censoring, the B-J estimator is essentially unbiased, even when the data sets with small sample sizes are subjected to a high censoring rate. The variance formula suggested by Buckley and James (1979) is shown to be sensitive to the failure distribution. If the censoring rate is kept constant along the covariate line, the sample variance of the estimator appears to be insensitive to the censoring pattern with a selected failure distribution. Oscillation of the convergence values associated with the B-J estimator is illustrated and thoroughly discussed. 相似文献
6.
E. Shirazi H. Doosti H.A. Niroumand N. Hosseinioun 《Journal of statistical planning and inference》2013
Here we consider wavelet-based identification and estimation of a censored nonparametric regression model via block thresholding methods and investigate their asymptotic convergence rates. We show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes, and in particular enjoy those rates without the extraneous logarithmic penalties that are usually suffered by term-by-term thresholding methods. This work is extension of results in Li et al. (2008). The performance of proposed estimator is investigated by a numerical study. 相似文献
7.
Ran Wang 《统计学通讯:理论与方法》2013,42(21):6342-6356
ABSTRACTThis article considers inference for partial linear models with right censored data. We use empirical likelihood based on the Buckley and James (1979) estimating equation to derive the confidence region for the regression parameter. We introduce an adjusted empirical likelihood ratio statistic for the parameter of interest and show that its limiting distribution is standard chi-square. A simulation is carried out to compare our method with the synthetic data approach in Wang and Li (2002). 相似文献
8.
In survival analysis applications, the presence of failure rate functions with non monotone shapes is common. Therefore, models that can accommodate such different shapes are needed. In this article, we present a location regression model based on the complementary exponentiated exponential geometric distribution as an alternative to the usual bathtub, increasing, and decreasing failure rates in lifetime data. Assuming censored data, we consider the maximum likelihood inference for analysis, graphical verification for residuals, and test statistics for influential points. 相似文献
9.
Thiago G. Ramires Niel Hens Gauss M. Cordeiro Gilberto A. Paula 《Journal of applied statistics》2018,45(7):1303-1324
In this paper, we propose a new semiparametric heteroscedastic regression model allowing for positive and negative skewness and bimodal shapes using the B-spline basis for nonlinear effects. The proposed distribution is based on the generalized additive models for location, scale and shape framework in order to model any or all parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. We motivate the new model by means of Monte Carlo simulations, thus ignoring the skewness and bimodality of the random errors in semiparametric regression models, which may introduce biases on the parameter estimates and/or on the estimation of the associated variability measures. An iterative estimation process and some diagnostic methods are investigated. Applications to two real data sets are presented and the method is compared to the usual regression methods. 相似文献
10.
Analysis of discrete lifetime data under middle-censoring and in the presence of covariates 总被引:1,自引:0,他引:1
S. Rao Jammalamadaka 《Journal of applied statistics》2015,42(4):905-913
‘Middle censoring’ is a very general censoring scheme where the actual value of an observation in the data becomes unobservable if it falls inside a random interval (L, R) and includes both left and right censoring. In this paper, we consider discrete lifetime data that follow a geometric distribution that is subject to middle censoring. Two major innovations in this paper, compared to the earlier work of Davarzani and Parsian [3], include (i) an extension and generalization to the case where covariates are present along with the data and (ii) an alternate approach and proofs which exploit the simple relationship between the geometric and the exponential distributions, so that the theory is more in line with the work of Iyer et al. [6]. It is also demonstrated that this kind of discretization of life times gives results that are close to the original data involving exponential life times. Maximum likelihood estimation of the parameters is studied for this middle-censoring scheme with covariates and their large sample distributions discussed. Simulation results indicate how well the proposed estimation methods work and an illustrative example using time-to-pregnancy data from Baird and Wilcox [1] is included. 相似文献
11.
Zhigang Zhang Liuquan Sun Xingqiu Zhao Jianguo Sun 《Revue canadienne de statistique》2005,33(1):61-70
The authors consider the estimation of regression parameters in the context of a class of generalized proportional hazards models, termed linear transformation models, in the presence of interval‐censored data. They present an estimating equation approach whose good performance is demonstrated through simulations and which they illustrate in a few concrete cases. 相似文献
12.
Byungsoo Kim 《Journal of Statistical Computation and Simulation》2017,87(15):2981-2996
In this study, we consider a robust estimation for zero-inflated Poisson autoregressive models using the minimum density power divergence estimator designed by Basu et al. [Robust and efficient estimation by minimising a density power divergence. Biometrika. 1998;85:549–559]. We show that under some regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. The performance of the estimator is evaluated through Monte Carlo simulations. A real data analysis using New South Wales crime data is also provided for illustration. 相似文献
13.
Sanjoy K. Sinha 《Revue canadienne de statistique》2008,36(2):277-299
The EM algorithm is often used for finding the maximum likelihood estimates in generalized linear models with incomplete data. In this article, the author presents a robust method in the framework of the maximum likelihood estimation for fitting generalized linear models when nonignorable covariates are missing. His robust approach is useful for downweighting any influential observations when estimating the model parameters. To avoid computational problems involving irreducibly high‐dimensional integrals, he adopts a Metropolis‐Hastings algorithm based on a Markov chain sampling method. He carries out simulations to investigate the behaviour of the robust estimates in the presence of outliers and missing covariates; furthermore, he compares these estimates to the classical maximum likelihood estimates. Finally, he illustrates his approach using data on the occurrence of delirium in patients operated on for abdominal aortic aneurysm. 相似文献
14.
Qingguo Tang 《Statistics》2013,47(2):388-404
A global smoothing procedure is developed using B-spline function approximation for estimating the unknown functions of a functional coefficient regression model with spatial data. A general formulation is used to treat mean regression, median regression, quantile regression and robust mean regression in one setting. The global convergence rates of the estimators of unknown coefficient functions are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are given. Finite sample properties of our procedures are studied through Monte Carlo simulations. A housing data example is used to illustrate the proposed methodology. 相似文献
15.
Ming Han 《统计学通讯:理论与方法》2020,49(8):1858-1872
AbstractThis article studies E-Bayesian estimation and its E-posterior risk, for failure rate derived from exponential distribution, in the case of the two hyper parameters. In order to measure the estimated risk, the definition of E-posterior risk (expected posterior risk) is proposed based on the definition of E-Bayesian estimation. Moreover, under the different prior distributions of hyper parameters, the formulas of E-Bayesian estimation and formulas of E-posterior risk are given respectively, these estimations are derived based on a conjugate prior distribution for the unknown parameter under the squared error loss function. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and a real data set have been analyzed for illustrative purposes, results are compared on the basis of E-posterior risk. 相似文献
16.
In longitudinal studies, missing responses and mismeasured covariates are commonly seen due to the data collection process. Without cautiousness in data analysis, inferences from the standard statistical approaches may lead to wrong conclusions. In order to improve the estimation for longitudinal data analysis, a doubly robust estimation method for partially linear models, which can simultaneously account for the missing responses and mismeasured covariates, is proposed. Imprecisions of covariates are corrected by taking advantage of the independence between replicate measurement errors, and missing responses are handled by the doubly robust estimation under the mechanism of missing at random. The asymptotic properties of the proposed estimators are established under regularity conditions, and simulation studies demonstrate desired properties. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study. 相似文献
17.
In this paper, we propose a novel robust principal component analysis (PCA) for high-dimensional data in the presence of various heterogeneities, in particular strong tailing and outliers. A transformation motivated by the characteristic function is constructed to improve the robustness of the classical PCA. The suggested method has the distinct advantage of dealing with heavy-tail-distributed data, whose covariances may be non-existent (positively infinite, for instance), in addition to the usual outliers. The proposed approach is also a case of kernel principal component analysis (KPCA) and employs the robust and non-linear properties via a bounded and non-linear kernel function. The merits of the new method are illustrated by some statistical properties, including the upper bound of the excess error and the behaviour of the large eigenvalues under a spiked covariance model. Additionally, using a variety of simulations, we demonstrate the benefits of our approach over the classical PCA. Finally, using data on protein expression in mice of various genotypes in a biological study, we apply the novel robust PCA to categorise the mice and find that our approach is more effective at identifying abnormal mice than the classical PCA. 相似文献
18.
AbstractIn this paper, we focus on the left-truncated and right-censored model, and construct the local linear and Nadaraya-Watson type estimators of the conditional density. Under suitable conditions, we establish the asymptotic normality of the proposed estimators when the observations are assumed to be a stationary α-mixing sequence. Finite sample behavior of the estimators is investigated via simulations too. 相似文献
19.
20.
Xing-Cai Zhou 《Statistics》2013,47(3):521-534
An inherent characteristic of longitudinal data is the dependence among the observations within the same subject. For exhibiting dependencies among the observations within the same subject, this paper considers a semiparametric partially linear regression model for longitudinal data based on martingale difference error's structure. We establish a strong consistency for the least squares estimator of a parametric component and the estimator of a non-parametric function under some mild conditions. A simulation study shows the performance of the proposed estimator in finite samples. 相似文献