共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Statistical Computation and Simulation》2012,82(11):1341-1353
The Buckley–James estimator (BJE) [J. Buckley and I. James, Linear regression with censored data, Biometrika 66 (1979), pp. 429–436] has been extended from right-censored (RC) data to interval-censored (IC) data by Rabinowitz et al. [D. Rabinowitz, A. Tsiatis, and J. Aragon, Regression with interval-censored data, Biometrika 82 (1995), pp. 501–513]. The BJE is defined to be a zero-crossing of a modified score function H(b), a point at which H(·) changes its sign. We discuss several approaches (for finding a BJE with IC data) which are extensions of the existing algorithms for RC data. However, these extensions may not be appropriate for some data, in particular, they are not appropriate for a cancer data set that we are analysing. In this note, we present a feasible iterative algorithm for obtaining a BJE. We apply the method to our data. 相似文献
2.
Methods of detecting influential observations for the normal model for censored data are proposed. These methods include one-step deletion methods, deletion of observations and the empirical influence function. Emphasis is placed on assessing the impact that a single observation has on the estimation of coefficients of the model. Functions of the coefficients such as the median lifetime are also considered. Results are compared when applied to two sets of data. 相似文献
3.
A proof is provided to show that Gehan's 1965 generalization of the two sample Wilcoxon test lies outside the class of efficient score procedures for right censored data (Prentice 1978). 相似文献
4.
The authors consider a formulation of penalized likelihood regression that is sufficiently general to cover canonical and noncanonical links for exponential families as well as accelerated life models with censored survival data. They present an asymptotic analysis of convergence rates to justify a simple approach to the lower‐dimensional approximation of the estimates. Such an approximation allows for much faster numerical calculation, paving the way to the development of algorithms that scale well with large data sets. 相似文献
5.
Abhik Ghosh 《Journal of applied statistics》2015,42(9):2056-2072
The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data. 相似文献
6.
Rank Regression Analysis of Multivariate Failure Time Data Based on Marginal Linear Models 总被引:2,自引:0,他引:2
Abstract. Multivariate failure time data arises when each study subject can potentially ex-perience several types of failures or recurrences of a certain phenomenon, or when failure times are sampled in clusters. We formulate the marginal distributions of such multivariate data with semiparametric accelerated failure time models (i.e. linear regression models for log-transformed failure times with arbitrary error distributions) while leaving the dependence structures for related failure times completely unspecified. We develop rank-based monotone estimating functions for the regression parameters of these marginal models based on right-censored observations. The estimating equations can be easily solved via linear programming. The resultant estimators are consistent and asymptotically normal. The limiting covariance matrices can be readily estimated by a novel resampling approach, which does not involve non-parametric density estimation or evaluation of numerical derivatives. The proposed estimators represent consistent roots to the potentially non-monotone estimating equations based on weighted log-rank statistics. Simulation studies show that the new inference procedures perform well in small samples. Illustrations with real medical data are provided. 相似文献
7.
Haifen Li Jiajia Zhang Yincai Tang 《Australian & New Zealand Journal of Statistics》2014,56(3):217-235
Mixture cure models are widely used when a proportion of patients are cured. The proportional hazards mixture cure model and the accelerated failure time mixture cure model are the most popular models in practice. Usually the expectation–maximisation (EM) algorithm is applied to both models for parameter estimation. Bootstrap methods are used for variance estimation. In this paper we propose a smooth semi‐nonparametric (SNP) approach in which maximum likelihood is applied directly to mixture cure models for parameter estimation. The variance can be estimated by the inverse of the second derivative of the SNP likelihood. A comprehensive simulation study indicates good performance of the proposed method. We investigate stage effects in breast cancer by applying the proposed method to breast cancer data from the South Carolina Cancer Registry. 相似文献
8.
《Journal of Statistical Computation and Simulation》2012,82(5):503-512
In this paper, we study the robust estimation for the order of hidden Markov model (HMM) based on a penalized minimum density power divergence estimator, which is obtained by utilizing the finite mixture marginal distribution of HMM. For this task, we adopt the locally conic parametrization method used in [D. Dacunha-Castelle and E. Gassiate, Testing in locally conic models and application to mixture models. ESAIM Probab. Stat. (1997), pp. 285–317; D. Dacunha-Castelle and E. Gassiate, Testing the order of a model using locally conic parametrization: population mixtures and stationary arma processes, Ann. Statist. 27 (1999), pp. 1178–1209; T. Lee and S. Lee, Robust and consistent estimation of the order of finite mixture models based on the minimizing a density power divergence estimator, Metrika 68 (2008), pp. 365–390] to avoid the difficulties that arise in handling mixture marginal models, such as the non-identifiability of the parameter space and the singularity problem with the asymptotic variance. We verify that the estimated order is consistent and simulation results are provided for illustration. 相似文献
9.
This paper considers the estimation of the ratio of two scale parameters when the data are censored. It emphasises characteristics of the asymptotic variance under censoring from a practical point of view. The estimator proposed by Padgett & Wei (1982) for the two-sample scale model is extended to the competing risks model. Asymptotic properties of the estimator are studied via its influence function. The use of influence functions permits a unified treatment of both models. Examples show and illustrate that under both models the variance can become infinite under some circumstances. 相似文献
10.
This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators. 相似文献
11.
《Journal of Statistical Computation and Simulation》2012,82(2-4):97-119
Estimation in the presence of censoring is an important problem. In the linear model, the Buckley-James method proceeds iteratively by estimating the censored values than re-estimating the regression coeffi- cients. A large-scale Monte Carlo simulation technique has been developed to test the performance of the Buckley-James (denoted B-J) estimator. One hundred and seventy two randomly generated data sets, each with three thousand replications, based on four failure distributions, four censoring patterns, three sample sizes and four censoring rates have been investigated, and the results are presented. It is found that, except for Type I1 censoring, the B-J estimator is essentially unbiased, even when the data sets with small sample sizes are subjected to a high censoring rate. The variance formula suggested by Buckley and James (1979) is shown to be sensitive to the failure distribution. If the censoring rate is kept constant along the covariate line, the sample variance of the estimator appears to be insensitive to the censoring pattern with a selected failure distribution. Oscillation of the convergence values associated with the B-J estimator is illustrated and thoroughly discussed. 相似文献
12.
The accelerated failure time (AFT) model is an important regression tool to study the association between failure time and covariates. In this paper, we propose a robust weighted generalized M (GM) estimation for the AFT model with right-censored data by appropriately using the Kaplan–Meier weights in the GM–type objective function to estimate the regression coefficients and scale parameter simultaneously. This estimation method is computationally simple and can be implemented with existing software. Asymptotic properties including the root-n consistency and asymptotic normality are established for the resulting estimator under suitable conditions. We further show that the method can be readily extended to handle a class of nonlinear AFT models. Simulation results demonstrate satisfactory finite sample performance of the proposed estimator. The practical utility of the method is illustrated by a real data example. 相似文献
13.
The generalized inverse Weibull distribution is a newlife time probability distribution which can be used to model a variety of failure characteristics. It has several desirable properties and nice physical interpretations which enable them to be used frequently. In this article, we present a chi-squared goodness-of-fit test for an accelerated failure time (AFT) model with generalized inverse Weibull distribution (GIW) as the baseline distribution, in both of complete and censored data. This test is based on a modification of the NRR (Nikulin-Rao-Robson) statistic Y2, proposed by Bagdonavicius and Nikulin (2011), for censored data. Two applications of real data are given to illustrate the potentiality of the proposed test. 相似文献
14.
《Journal of nonparametric statistics》2012,24(3):647-663
A local modal estimation procedure is proposed for the regression function in a nonparametric regression model. A distinguishing characteristic of the proposed procedure is that it introduces an additional tuning parameter that is automatically selected using the observed data in order to achieve both robustness and efficiency of the resulting estimate. We demonstrate both theoretically and empirically that the resulting estimator is more efficient than the ordinary local polynomial regression (LPR) estimator in the presence of outliers or heavy-tail error distribution (such as t-distribution). Furthermore, we show that the proposed procedure is as asymptotically efficient as the LPR estimator when there are no outliers and the error distribution is a Gaussian distribution. We propose an expectation–maximisation-type algorithm for the proposed estimation procedure. A Monte Carlo simulation study is conducted to examine the finite sample performance of the proposed method. The simulation results confirm the theoretical findings. The proposed methodology is further illustrated via an analysis of a real data example. 相似文献
15.
Yunyan Wang 《统计学通讯:理论与方法》2013,42(1):48-62
In this article, we develop a local M-estimation for the conditional variance in heteroscedastic regression models. The estimator is based on the local linear smoothing technique and the M-estimation technique, and it is shown to be not only asymptotically equivalent to the local linear estimator but also robust. The consistency and asymptotic normality of the local M-estimator for the conditional variance in heteroscedastic regression models are obtained under mild conditions. The simulation studies demonstrate that the proposed estimators perform well in robustness. 相似文献
16.
I. Ardoino E. M. Biganzoli C. Bajdik P. J. Lisboa P. Boracchi F. Ambrogi 《Journal of applied statistics》2012,39(7):1409-1421
In cancer research, study of the hazard function provides useful insights into disease dynamics, as it describes the way in which the (conditional) probability of death changes with time. The widely utilized Cox proportional hazard model uses a stepwise nonparametric estimator for the baseline hazard function, and therefore has a limited utility. The use of parametric models and/or other approaches that enables direct estimation of the hazard function is often invoked. A recent work by Cox et al. [6] has stimulated the use of the flexible parametric model based on the Generalized Gamma (GG) distribution, supported by the development of optimization software. The GG distribution allows estimation of different hazard shapes in a single framework. We use the GG model to investigate the shape of the hazard function in early breast cancer patients. The flexible approach based on a piecewise exponential model and the nonparametric additive hazards model are also considered. 相似文献
17.
The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non‐parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non‐differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non‐differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset. 相似文献
18.
19.
AbstractThis paper studies a linear regression model with asymptotically almost negatively associated (AANA, in short) random errors. Under some mild conditions, the weak consistency of M-estimator of the unknown parameter is investigated, which extend the corresponding results for independent random errors and negatively associated (NA, in short) random errors. At last, two simulation examples are presented to verify the weak consistency of M-estimator in the model. 相似文献
20.
Choice of Parametric Accelerated Life and Proportional Hazards Models for Survival Data: Asymptotic Results 总被引:1,自引:0,他引:1
We discuss the impact of misspecifying fully parametric proportional hazards and accelerated life models. For the uncensored case, misspecified accelerated life models give asymptotically unbiased estimates of covariate effect, but the shape and scale parameters depend on the misspecification. The covariate, shape and scale parameters differ in the censored case. Parametric proportional hazards models do not have a sound justification for general use: estimates from misspecified models can be very biased, and misleading results for the shape of the hazard function can arise. Misspecified survival functions are more biased at the extremes than the centre. Asymptotic and first order results are compared. If a model is misspecified, the size of Wald tests will be underestimated. Use of the sandwich estimator of standard error gives tests of the correct size, but misspecification leads to a loss of power. Accelerated life models are more robust to misspecification because of their log-linear form. In preliminary data analysis, practitioners should investigate proportional hazards and accelerated life models; software is readily available for several such models. 相似文献