首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
It is well known that it is difficult to construct minimax optimal designs. Furthermore, since in practice we never know the true error variance, it is important to allow small deviations and construct robust optimal designs. We investigate a class of minimax optimal regression designs for models with heteroscedastic errors that are robust against possible misspecification of the error variance. Commonly used A-, c-, and I-optimality criteria are included in this class of minimax optimal designs. Several theoretical results are obtained, including a necessary condition and a reflection symmetry for these minimax optimal designs. In this article, we focus mainly on linear models and assume that an approximate error variance function is available. However, we also briefly discuss how the methodology works for nonlinear models. We then propose an effective algorithm to solve challenging nonconvex optimization problems to find minimax designs on discrete design spaces. Examples are given to illustrate minimax optimal designs and their properties.  相似文献   

2.
This article considers the robust design problem for linear random intercept models with both departures from fixed effects and correlated errors on a finite design space. Two strategies are proposed. One is a worst-case method minimizing the maximum value of the MSE of estimates for the fixed effects over the departure. The other is an average-case method minimizing the average value of the MSE with respect to some priors for the class of departure functions and correlation structures of random errors. Two examples are given to show robust designs for two polynomial models.  相似文献   

3.
This paper considers the construction of D-optimum designs for Kronecker product and additive regression models when the errors are heteroscedastic. Sufficient conditions are given so that D-optimum designs for the multi-factor models can be built from D-optimum designs for their sub-models with a single factor. A robustness study is included to investigate how design efficiencies change when the efficiency functions are miss-specified.  相似文献   

4.
This paper focuses on robust estimation and variable selection for partially linear models. We combine the weighted least absolute deviation (WLAD) regression with the adaptive least absolute shrinkage and selection operator (LASSO) to achieve simultaneous robust estimation and variable selection for partially linear models. Compared with the LAD-LASSO method, the WLAD-LASSO method will resist to the heavy-tailed errors and outliers in the parametric components. In addition, we estimate the unknown smooth function by a robust local linear regression. Under some regular conditions, the theoretical properties of the proposed estimators are established. We further examine finite-sample performance of the proposed procedure by simulation studies and a real data example.  相似文献   

5.
We discuss the assumption of symmetry in robust linear regression. It is important to distinguish between the intercept term and the slope parameters. Ordinary robust regression requires no assumption of symmetry when interest lies in slope parameters; computer programs, confidence intervals, standard errors, and so forth do not change because the errors are asymmetric. The situation is radically different for bounded-influence estimators. With the exception of the Mallows class, these estimators are inconsistent for slope when the errors are asymmetric.  相似文献   

6.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

7.
We study minimax robust designs for response prediction and extrapolation in biased linear regression models. We extend previous work of others by considering a nonlinear fitted regression response, by taking a rather general extrapolation space and, most significantly, by dropping all restrictions on the structure of the regressors. Several examples are discussed.  相似文献   

8.
This article presents a class of estimators for linear structural models that are robust to heavytailed disturbance distributions, gross errors in either the endogenous or exogenous variables, and certain other model failures. The class of estimators modifies ordinary two-stage least squares by replacing each least squares regression by a bounded-influence regression. Conditions under which the estimators are qualitatively robust, consistent, and asymptotically normal are established, and an empirical example is presented.  相似文献   

9.
This paper studies optimum designs for linear models when the errors are heteroscedastic. Sufficient conditions are given in order to obtainD-, A- andE-optimum designs for a complete regression model from partial optimum designs for some sub-parameters. A result about optimality for a complete model from the optimality for the submodels is included. Supported by Junta de Andalucía, research group FQM244.  相似文献   

10.
We obtain designs for linear regression models under two main departures from the classical assumptions: (1) the response is taken to be only approximately linear, and (2) the errors are not assumed to be independent, but to instead follow a first-order autoregressive process. These designs have the property that they minimize (a modification of) the maximum integrated mean squared error of the estimated response, with the maximum taken over a class of departures from strict linearity and over all autoregression parameters ρ,|ρ,| < 1, of fixed sign. Specific methods of implementation are discussed. We find that an asymptotically optimal procedure for AR(1) models consists of choosing points from that design measure which is optimal for uncorrelated errors, and then implementing them in an appropriate order.  相似文献   

11.
In this paper, a robust estimator is proposed for partially linear regression models. We first estimate the nonparametric component using the penalized regression spline, then we construct an estimator of parametric component by using robust S-estimator. We propose an iterative algorithm to solve the proposed optimization problem, and introduce a robust generalized cross-validation to select the penalized parameter. Simulation studies and a real data analysis illustrate that the our proposed method is robust against outliers in the dataset or errors with heavy tails.  相似文献   

12.
Polynomial spline regression models of low degree have proved useful in modeling responses from designed experiments in science and engineering when simple polynomial models are inadequate. Where there is uncertainty in the number and location of the knots, or breakpoints, of the spline, then designs that minimize the systematic errors resulting from model misspecification may be appropriate. This paper gives a method for constructing such all‐bias designs for a single variable spline when the distinct knots in the assumed and true models come from some specified set. A class of designs is defined in terms of the inter‐knot intervals and sufficient conditions are obtained for a design within this class to be all‐bias under linear, quadratic and cubic spline models. An example of the construction of all‐bias designs is given.  相似文献   

13.
Robust estimation methods are often used to eliminate or weaken the influences of gross errors on parameter estimation. However, different robust estimation methods may have different capabilities in eliminating or weakening gross errors. Taking unary linear regression as example, simulation experiments are used to compare 14 frequently used robust estimation methods. The current article summarizes the common characteristics and rules of the robust estimation methods. Finally, we confirm several relatively more efficient methods for unary linear regression.  相似文献   

14.
In this paper we present the construction of robust designs for a possibly misspecified generalized linear regression model when the data are censored. The minimax designs and unbiased designs are found for maximum likelihood estimation in the context of both prediction and extrapolation problems. This paper extends preceding work of robust designs for complete data by incorporating censoring and maximum likelihood estimation. It also broadens former work of robust designs for censored data from others by considering both nonlinearity and much more arbitrary uncertainty in the fitted regression response and by dropping all restrictions on the structure of the regressors. Solutions are derived by a nonsmooth optimization technique analytically and given in full generality. A typical example in accelerated life testing is also demonstrated. We also investigate implementation schemes which are utilized to approximate a robust design having a density. Some exact designs are obtained using an optimal implementation scheme.  相似文献   

15.
A new design criterion based on the condition number of an information matrix is proposed to construct optimal designs for linear models, and the resulting designs are called K-optimal designs. The relationship between exact and asymptotic K-optimal designs is derived. Since it is usually hard to find exact optimal designs analytically, we apply a simulated annealing algorithm to compute K-optimal design points on continuous design spaces. Specific issues are addressed to make the algorithm effective. Through exact designs, we can examine some properties of the K-optimal designs such as symmetry and the number of support points. Examples and results are given for polynomial regression models and linear models for fractional factorial experiments. In addition, K-optimal designs are compared with A-optimal and D-optimal designs for polynomial regression models, showing that K-optimal designs are quite similar to A-optimal designs.  相似文献   

16.
A- and D-optimal regression designs under random block-effects models are considered. We first identify certain situations where D- and A-optimal designs do not depend on the intra-block correlation and can be obtained easily from the optimal designs under uncorrelated models. For example, for quadratic regression on [−1,1], this covers D-optimal designs when the block size is a multiple of 3 and A-optimal designs when the block size is a multiple of 4. In general, the optimal designs depend on the intra-block correlation. For quadratic regression, we provide expressions for D-optimal designs for any block size. A-optimal designs with blocks of size 2 for quadratic regression are also obtained. In all the cases considered, robust designs which do not depend on the intrablock correlation can be constructed.  相似文献   

17.
ABSTRACT

For experiments running in field plots or over time, the observations are often correlated due to spatial or serial correlation, which leads to correlated errors in a linear model analyzing the treatment means. Without knowing the exact correlation matrix of the errors, it is not possible to compute the generalized least-squares estimator for the treatment means and use it to construct optimal designs for the experiments. In this paper, we propose to use neighborhoods to model the covariance matrix of the errors, and apply a modified generalized least-squares estimator to construct robust designs for experiments with blocks. A minimax design criterion is investigated, and a simulated annealing algorithm is developed to find robust designs. We have derived several theoretical results, and representative examples are presented.  相似文献   

18.
We develop criteria that generate robust designs and use such criteria for the construction of designs that insure against possible misspecifications in logistic regression models. The design criteria we propose are different from the classical in that we do not focus on sampling error alone. Instead we use design criteria that account as well for error due to bias engendered by the model misspecification. Our robust designs optimize the average of a function of the sampling error and bias error over a specified misspecification neighbourhood. Examples of robust designs for logistic models are presented, including a case study implementing the methodologies using beetle mortality data.  相似文献   

19.
For the linear regression with AR(1) errors model, the robust generalized and feasible generalized estimators of Lai et al. (2003) of regression parameters are shown to have the desired property of a robust Gauss Markov theorem. This is done by showing that these two estimators are the best among classes of linear trimmed means. Monte Carlo and data analysis for this technique have been performed.  相似文献   

20.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号