首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a Poisson‐based model that uses both error‐free data and error‐prone data subject to misclassification in the form of false‐negative and false‐positive counts. It derives maximum likelihood estimators (MLEs) for the Poisson rate parameter and the two misclassification parameters — the false‐negative parameter and the false‐positive parameter. It also derives expressions for the information matrix and the asymptotic variances of the MLE for the rate parameter, the MLE for the false‐positive parameter, and the MLE for the false‐negative parameter. Using these expressions the paper analyses the value of the fallible data. It studies characteristics of the new double‐sampling rate estimator via a simulation experiment and applies the new MLE estimators and confidence intervals to a real dataset.  相似文献   

2.
We derive a new Bayesian credible interval estimator for comparing two Poisson rates when counts are underreported and an additional validation data set is available. We provide a closed-form posterior density for the difference between the two rates that yields insightful information on which prior parameters influence the posterior the most. We also apply the new interval estimator to a real-data example, investigate the performance of the credible interval, and examine the impact of informative priors on the rate difference posterior via Monte Carlo simulations.  相似文献   

3.
We investigate a Bayesian inference in the three-parameter bathtub-shaped lifetime distribution which is obtained by adding a power parameter to the two-parameter bathtub-shaped lifetime distribution suggested by Chen (2000). The Bayes estimators under the balanced squared error loss function are derived for three parameters. Then, we have used Lindley's and Tierney–Kadane approximations (see Lindley 1980; Tierney and Kadane 1986) for computing these Bayes estimators. In particular, we propose the explicit form of Lindley's approximation for the model with three parameters. We also give applications with a simulated data set and two real data sets to show the use of discussed computing methods. Finally, concluding remarks are mentioned.  相似文献   

4.
In this paper, we discuss a progressively censored inverted exponentiated Rayleigh distribution. Estimation of unknown parameters is considered under progressive censoring using maximum likelihood and Bayesian approaches. Bayes estimators of unknown parameters are derived with respect to different symmetric and asymmetric loss functions using gamma prior distributions. An importance sampling procedure is taken into consideration for deriving these estimates. Further highest posterior density intervals for unknown parameters are constructed and for comparison purposes bootstrap intervals are also obtained. Prediction of future observations is studied in one- and two-sample situations from classical and Bayesian viewpoint. We further establish optimum censoring schemes using Bayesian approach. Finally, we conduct a simulation study to compare the performance of proposed methods and analyse two real data sets for illustration purposes.  相似文献   

5.
In this paper we propose Stein‐type shrinkage estimators for the parameter vector of a Poisson regression model when it is suspected that some of the parameters may be restricted to a subspace. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Furthermore, we consider three different penalty estimators: the LASSO, adaptive LASSO, and SCAD estimators and compare their relative performance with that of the shrinkage estimators. Monte Carlo simulation studies reveal that the shrinkage strategy compares favorably to the use of penalty estimators, in terms of relative mean squared error, when the number of inactive predictors in the model is moderate to large. The shrinkage and penalty strategies are applied to two real data sets to illustrate the usefulness of the procedures in practice.  相似文献   

6.
In this paper, we introduce a generalization of the Bilal distribution, where a new two-parameter distribution is presented. We show that its failure rate function can be upside-down bathtub shaped. The failure rate can also be decreasing or increasing. A comprehensive mathematical treatment of the new distribution is provided. The estimation by maximum likelihood is discussed, and a closed-form expression for Fisher’s information matrix is obtained. Asymptotic interval estimators for both of the two unknown parameters are also given. A simulation study is conducted and applications to real data sets are presented.  相似文献   

7.
In this paper, we consider the Bayesian inference of the unknown parameters of the randomly censored Weibull distribution. A joint conjugate prior on the model parameters does not exist; we assume that the parameters have independent gamma priors. Since closed-form expressions for the Bayes estimators cannot be obtained, we use Lindley's approximation, importance sampling and Gibbs sampling techniques to obtain the approximate Bayes estimates and the corresponding credible intervals. A simulation study is performed to observe the behaviour of the proposed estimators. A real data analysis is presented for illustrative purposes.  相似文献   

8.
We formulate Bayesian approaches to the problems of determining the required sample size for Bayesian interval estimators of a predetermined length for a single Poisson rate, for the difference between two Poisson rates, and for the ratio of two Poisson rates. We demonstrate the efficacy of our Bayesian-based sample-size determination method with two real-data quality-control examples and compare the results to frequentist sample-size determination methods.  相似文献   

9.
Block and Basu bivariate exponential distribution is one of the most popular absolute continuous bivariate distributions. Recently, Kundu and Gupta [A class of absolute continuous bivariate distributions. Statist Methodol. 2010;7:464–477] introduced Block and Basu bivariate Weibull (BBBW) distribution, which is a generalization of the Block and Basu bivariate exponential distribution, and provided the maximum likelihood estimators using EM algorithm. In this paper, we consider the Bayesian inference of the unknown parameters of the BBBW distribution. The Bayes estimators are obtained with respect to the squared error loss function, and the prior distributions allow for prior dependence among the unknown parameters. Prior independence also can be obtained as a special case. It is observed that the Bayes estimators of the unknown parameters cannot be obtained in explicit forms. We propose to use the importance sampling technique to compute the Bayes estimates and also to construct the associated highest posterior density credible intervals. The analysis of two data sets has been performed for illustrative purposes. The performances of the proposed estimators are quite satisfactory. Finally, we generalize the results for the multivariate case.  相似文献   

10.
This paper develops a natural conjugate prior for the non-homogeneous Poisson process (NHPP) with a power law intensity function. This prior allows for dependence between the scale factor and the aging rate of the NHPP. The proposed prior has relatively simple closed-form expressions for its moments, facilitating the assessment of prior parameters. The use of this prior in Bayesian estimation is compared to other estimation approaches using Monte Carlo simulation. The results show that Bayesian estimation using the proposed prior generally performs at least as well as either maximum likelihood estimation or Bayesian estimation using independent prior  相似文献   

11.
The problem of estimation of the parameters of two-parameter inverse Weibull distributions has been considered. We establish existence and uniqueness of the maximum likelihood estimators of the scale and shape parameters. We derive Bayes estimators of the parameters under the entropy loss function. Hierarchical Bayes estimator, equivariant estimator and a class of minimax estimators are derived when shape parameter is known. Ordered Bayes estimators using information about second population are also derived. We investigate the reliability of multi-component stress-strength model using classical and Bayesian approaches. Risk comparison of the classical and Bayes estimators is done using Monte Carlo simulations. Applications of the proposed estimators are shown using real data sets.  相似文献   

12.
We investigate three interval estimators for binomial misclassification rates in a complementary Poisson model where the data are possibly misclassified: a Wald-based interval, a score-based interval, and an interval based on the profile log-likelihood statistic. We investigate the coverage and average width properties of these intervals via a simulation study. For small Poisson counts and small misclassification rates, the intervals can perform poorly in terms of coverage. The profile log-likelihood confidence interval (CI) is often proved to outperform the other intervals with good coverage and width properties. Lastly, we apply the CIs to a real data set involving traffic accident data that contain misclassified counts.  相似文献   

13.
The article presents the Bayesian inference for the parameters of randomly censored Burr-type XII distribution with proportional hazards. The joint conjugate prior of the proposed model parameters does not exist; we consider two different systems of priors for Bayesian estimation. The explicit forms of the Bayes estimators are not possible; we use Lindley's method to obtain the Bayes estimates. However, it is not possible to obtain the Bayesian credible intervals with Lindley's method; we suggest the Gibbs sampling procedure for this purpose. Numerical experiments are performed to check the properties of the different estimators. The proposed methodology is applied to a real-life data for illustrative purposes. The Bayes estimators are compared with the Maximum likelihood estimators via numerical experiments and real data analysis. The model is validated using posterior predictive simulation in order to ascertain its appropriateness.  相似文献   

14.
This paper deals with the Bayesian estimation of generalized exponential distribution in the proportional hazards model of random censorship under asymmetric loss functions. It is well known for the two-parameter lifetime distributions that the continuous conjugate priors for parameters do not exist; we assume independent gamma priors for the scale and the shape parameters. It is observed that the closed-form expressions for the Bayes estimators cannot be obtained; we propose Tierney–Kadane's approximation and Gibbs sampling to approximate the Bayes estimates. Monte Carlo simulation is carried out to observe the behavior of the proposed methods and one real data analysis is performed for illustration. Bayesian methods are compared with maximum likelihood and it is observed that the Bayes estimators perform better than the maximum-likelihood estimators in some cases.  相似文献   

15.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

16.
There is a large literature on estimation under misclassification. The present paper reviews epidemiologic inference under misclassification in the multiway contingency-table setting, and addresses a few controversial issues. In the 1990s, claims of inefficiency of early closed-form estimators of odds ratios under misclassification arose from misapplication of the estimators to studies with internal validation. In reality, these estimators are maximum likelihood (ML) and hence efficient under the external-validation assumptions used for their derivation. For the internal-validation case, a new closed-form estimator is derived that incorporates the nondifferentiality constraint into the predictive-value (“direct” or “inverse-matrix”) estimator. Results are presented in a general framework that applies to misclassification in models for multiway tables, and that allows the target parameter to be any measure of association or effect.  相似文献   

17.
Categorical data frequently arise in applications in the Social Sciences. In such applications, the class of log-linear models, based on either a Poisson or (product) multinomial response distribution, is a flexible model class for inference and prediction. In this paper we consider the Bayesian analysis of both Poisson and multinomial log-linear models. It is often convenient to model multinomial or product multinomial data as observations of independent Poisson variables. For multinomial data, Lindley (1964) [20] showed that this approach leads to valid Bayesian posterior inferences when the prior density for the Poisson cell means factorises in a particular way. We develop this result to provide a general framework for the analysis of multinomial or product multinomial data using a Poisson log-linear model. Valid finite population inferences are also available, which can be particularly important in modelling social data. We then focus particular attention on multivariate normal prior distributions for the log-linear model parameters. Here, an improper prior distribution for certain Poisson model parameters is required for valid multinomial analysis, and we derive conditions under which the resulting posterior distribution is proper. We also consider the construction of prior distributions across models, and for model parameters, when uncertainty exists about the appropriate form of the model. We present classes of Poisson and multinomial models, invariant under certain natural groups of permutations of the cells. We demonstrate that, if prior belief concerning the model parameters is also invariant, as is the case in a ‘reference’ analysis, then the choice of prior distribution is considerably restricted. The analysis of multivariate categorical data in the form of a contingency table is considered in detail. We illustrate the methods with two examples.  相似文献   

18.
Summary.  A useful discrete distribution (the Conway–Maxwell–Poisson distribution) is revived and its statistical and probabilistic properties are introduced and explored. This distribution is a two-parameter extension of the Poisson distribution that generalizes some well-known discrete distributions (Poisson, Bernoulli and geometric). It also leads to the generalization of distributions derived from these discrete distributions (i.e. the binomial and negative binomial distributions). We describe three methods for estimating the parameters of the Conway–Maxwell–Poisson distribution. The first is a fast simple weighted least squares method, which leads to estimates that are sufficiently accurate for practical purposes. The second method, using maximum likelihood, can be used to refine the initial estimates. This method requires iterations and is more computationally intensive. The third estimation method is Bayesian. Using the conjugate prior, the posterior density of the parameters of the Conway–Maxwell–Poisson distribution is easily computed. It is a flexible distribution that can account for overdispersion or underdispersion that is commonly encountered in count data. We also explore two sets of real world data demonstrating the flexibility and elegance of the Conway–Maxwell–Poisson distribution in fitting count data which do not seem to follow the Poisson distribution.  相似文献   

19.
In this paper, we propose a cure rate survival model by assuming that the number of competing causes of the event of interest follows the Poisson distribution and the time to event has the Birnbaum–Saunders (BS) distribution. We define the Poisson BS distribution and provide two useful representations for its density function which facilitate to obtain some mathematical properties. Two closed-form expressions for the moments of the new distribution are given. We estimate the parameters of the model with cure rate using maximum likelihood. For different parameter settings, sample sizes and censoring percentages, several simulations are performed. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform a global influence study. We analyse a real data set from the medical area.  相似文献   

20.
The present work proposes a new integer valued autoregressive model with Poisson marginal distribution based on the mixing Pegram and dependent Bernoulli thinning operators. Properties of the model are discussed. We consider several methods for estimating the unknown parameters of the model. Also, the classical and Bayesian approaches are used for forecasting. Simulations are performed for the performance of these estimators and forecasting methods. Finally, the analysis of two real data has been presented for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号