首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, Borgatti [Borgatti, S.P., 2005. Centrality and network flow. Social Networks 27, 55–71] proposed a taxonomy of centrality measures based on the way that traffic flows through the network—whether over path, geodesic, trail, or walk, and whether by means of transfer, serial duplication, or parallel duplication. Most of the extant centrality measures assume that traffic propagates via parallel duplication or, alternatively, that it travels over geodesics. Few of the other flow possibilities have centrality measures associated with them. This article proposes an entropy-based measure of centrality appropriate for traffic that propagates by transfer and flows along paths. The proposed measure can be applied to most network types, whether binary or weighted, directed or undirected, connected or disconnected. The measure is illustrated on the gang alliance network of Kennedy et al. [Kennedy, D.M., Braga, A. A., Piehl, A.M., 1998. The (un)known universe: mapping gangs and gang violence in Boston. Crime Prevention Studies 8, 219–262].  相似文献   

2.
Port and maritime studies dealing with containerization have observed traffic concentration and dispersion throughout the world. Globalization, intermodal transportation, and technological revolutions in the shipping industry have resulted in both network extension and rationalization. However, lack of precise data on inter‐port relations prevent the application of wider network theories to global maritime container networks, which are often examined through case studies of specific firms or regions. In this article, we present an analysis of the global liner shipping network in 1996 and 2006, a period of rapid change in port hierarchies and liner service configurations. While we refer to literature on port system development, shipping networks, and port selection, the article is one of the only analyses of the properties of the global container shipping network. We analyse the relative position of ports in the global network through indicators of centrality. The results reveal a certain level of robustness in the global shipping network. While transhipment hub flows and gateway flows might slightly shift among nodes in the network, the network properties remain rather stable in terms of the main nodes polarizing the network and the overall structure of the system. In addition, mapping the changing centrality of ports confirms the impacts of global trade and logistics shifts on the port hierarchy and indicates that changes are predominantly geographic.  相似文献   

3.
Digital data enable researchers to obtain fine-grained temporal information about social interactions. However, positional measures used in social network analysis (e.g., degree centrality, reachability, betweenness) are not well suited to these time-stamped interaction data because they ignore sequence and time of interactions. While new temporal measures have been developed, they consider time and sequence separately. Building on formal algebra, we propose three temporal equivalents to positional network measures that incorporate time and sequence. We demonstrate how these temporal equivalents can be applied to an empirical context and compare the results with their static counterparts. We show that, compared to their temporal counterparts, static measures applied to interaction networks obscure meaningful differences in the way in which individuals accumulate alters over time, conceal potential disconnections in the network by overestimating reachability, and bias the distribution of betweenness centrality, which can affect the identification of key individuals in the network.  相似文献   

4.
Vertex betweenness centrality is a metric that seeks to quantify a sense of the importance of a vertex in a network in terms of its ‘control’ on the flow of information along geodesic paths throughout the network. Two natural ways to extend vertex betweenness centrality to sets of vertices are (i) in terms of geodesic paths that pass through at least one of the vertices in the set, and (ii) in terms of geodesic paths that pass through all vertices in the set. The former was introduced by Everett and Borgatti [Everett, M., Borgatti, S., 1999. The centrality of groups and classes. Journal of Mathematical Sociology 23 (3), 181–201], and called group betweenness centrality. The latter, which we call co-betweenness centrality here, has not been considered formally in the literature until now, to the best of our knowledge. In this paper, we show that these two notions of centrality are in fact intimately related and, furthermore, that this relationship may be exploited to obtain deeper insight into both. In particular, we provide an expansion for group betweenness in terms of increasingly higher orders of co-betweenness, in a manner analogous to the Taylor series expansion of a mathematical function in calculus. We then demonstrate the utility of this expansion by using it to construct analytic lower and upper bounds for group betweenness that involve only simple combinations of (i) the betweenness of individual vertices in the group, and (ii) the co-betweenness of pairs of these vertices. Accordingly, we argue that the latter quantity, i.e., pairwise co-betweenness, is itself a fundamental quantity of some independent interest, and we present a computationally efficient algorithm for its calculation, which extends the algorithm of Brandes [Brandes, U., 2001. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163] in a natural manner. Applications are provided throughout, using a handful of different communication networks, which serve to illustrate the way in which our mathematical contributions allow for insight to be gained into the interaction of network structure, coalitions, and information flow in social networks.  相似文献   

5.
《Social Networks》2006,28(2):124-136
An analysis is conducted on the robustness of measures of centrality in the face of random error in the network data. We use random networks of varying sizes and densities and subject them (separately) to four kinds of random error in varying amounts. The types of error are edge deletion, node deletion, edge addition, and node addition. The results show that the accuracy of centrality measures declines smoothly and predictably with the amount of error. This suggests that, for random networks and random error, we shall be able to construct confidence intervals around centrality scores. In addition, centrality measures were highly similar in their response to error. Dense networks were the most robust in the face of all kinds of error except edge deletion. For edge deletion, sparse networks were more accurately measured.  相似文献   

6.
Three competing hypotheses about structural centrality are explored by means of a replication of the early MIT experiments on communication structure and group problem-solving. It is shown that although two of the three kinds of measures of centrality have a demonstrable effect on individual responses and group processes, the classic measure of centrality based on distance is unrelated to any experimental variable. A suggestion is made that the positive results provided by distance-based centrality in earlier experiments is an artifact of the particular structures chosen for experimentation.  相似文献   

7.
A variety of node-level centrality measures, including purely structural measures (such as degree and closeness centrality) and measures incorporating characteristics of actors (such as the Blau's measure of heterogeneity) have been developed to measure a person's access to resources held by others. Each of these node-level measures can be placed on a continuum depending on whether they focus only on ego's direct contacts (e.g. degree centrality and Blau's measure of heterogeneity), or whether they also incorporate connections to others at longer distances in the network (e.g. closeness centrality or betweenness centrality). In this paper we propose generalized measures, where a tuning parameter δ regulates the relative impact of resources held by more close versus more distant others. We first show how, when a specific δ is chosen degree-centrality and reciprocal closeness centrality are two specific instances of this more general measure. We then demonstrate how a similar approach can be applied to node-level measures that incorporate attributes. When more or less weight is given to other nodes at longer distances with specific characteristics, a generalized measure of resource-richness and a generalized measure for diversity among one's connections can be obtained (following Blau's measure of heterogeneity). Finally, we show how this approach can also be applied to betweenness centrality to focus on more local (ego) betweenness or global (Freeman) betweenness. The importance of the choice of δ is illustrated on some classic network datasets.  相似文献   

8.
9.
《Social Networks》2006,28(4):466-484
The concept of centrality is often invoked in social network analysis, and diverse indices have been proposed to measure it. This paper develops a unified framework for the measurement of centrality. All measures of centrality assess a node's involvement in the walk structure of a network. Measures vary along four key dimensions: type of nodal involvement assessed, type of walk considered, property of walk assessed, and choice of summary measure. If we cross-classify measures by type of nodal involvement (radial versus medial) and property of walk assessed (volume versus length), we obtain a four-fold polychotomization with one cell empty which mirrors Freeman's 1979 categorization. At a more substantive level, measures of centrality summarize a node's involvement in or contribution to the cohesiveness of the network. Radial measures in particular are reductions of pair-wise proximities/cohesion to attributes of nodes or actors. The usefulness and interpretability of radial measures depend on the fit of the cohesion matrix to the one-dimensional model. In network terms, a network that is fit by a one-dimensional model has a core-periphery structure in which all nodes revolve more or less closely around a single core. This in turn implies that the network does not contain distinct cohesive subgroups. Thus, centrality is shown to be intimately connected with the cohesive subgroup structure of a network.  相似文献   

10.
Archaeologists are increasingly interested in networks constructed from site assemblage data, in which weighted network ties reflect sites’ assemblage similarity. Equivalent networks would arise in other scientific fields where actors’ similarity is assessed by comparing distributions of observed counts, so the assemblages studied here can represent other kinds of distributions in other domains. One concern with such work is that sampling variability in the assemblage network and, in turn, sampling variability in measures calculated from the network must be recognized in any comprehensive analysis. In this study, we investigated the use of the bootstrap as a means of estimating sampling variability in measures of assemblage networks. We evaluated the performance of the bootstrap in simulated assemblage networks, using a probability structure based on the actual distribution of sherds of ceramic wares in a region with 25 archaeological sites. Results indicated that the bootstrap was successful in estimating the true sampling variability of eigenvector centrality for the 25 sites. This held both for centrality scores and for centrality ranks, as well as the ratio of first to second eigenvalues of the network (similarity) matrix. Findings encourage the use of the bootstrap as a tool in analyses of network data derived from counts.  相似文献   

11.
Social network analysts have often collected data on negative relations such as dislike, avoidance, and conflict. Most often, the ties are analyzed in such a way that the fact that they are negative is of no consequence. For example, they have often been used in blockmodeling analyses where many different kinds of ties are used together and all ties are treated the same, regardless of meaning. However, sometimes we may wish to apply other network analysis concepts, such as centrality or cohesive subgroups. The question arises whether all extant techniques are applicable to negative tie data. In this paper, we consider in a systematic way which standard techniques are applicable to negative ties and what changes in interpretation have to be made because of the nature of the ties. We also introduce some new techniques specifically designed for negative ties. Finally we show how one of these techniques for centrality can be extended to networks with both positive and negative ties to give a new centrality measure (PN centrality) that is applicable to directed valued data with both positive and negative ties.  相似文献   

12.
A measure of betweenness centrality based on random walks   总被引:1,自引:0,他引:1  
《Social Networks》2005,27(1):39-54
Betweenness is a measure of the centrality of a node in a network, and is normally calculated as the fraction of shortest paths between node pairs that pass through the node of interest. Betweenness is, in some sense, a measure of the influence a node has over the spread of information through the network. By counting only shortest paths, however, the conventional definition implicitly assumes that information spreads only along those shortest paths. Here, we propose a betweenness measure that relaxes this assumption, including contributions from essentially all paths between nodes, not just the shortest, although it still gives more weight to short paths. The measure is based on random walks, counting how often a node is traversed by a random walk between two other nodes. We show how our measure can be calculated using matrix methods, and give some examples of its application to particular networks.  相似文献   

13.
Centrality in social networks conceptual clarification   总被引:58,自引:0,他引:58  
The intuitive background for measures of structural centrality in social networks is reviewed and existing measures are evaluated in terms of their consistency with intuitions and their interpretability.Three distinct intuitive conceptions of centrality are uncovered and existing measures are refined to embody these conceptions. Three measures are developed for each concept, one absolute and one relative measure of the centrality of positions in a network, and one reflecting the degree of centralization of the entire network. The implications of these measures for the experimental study of small groups is examined.  相似文献   

14.
《Social Networks》2002,24(4):407-422
Egocentric centrality measures (for data on a node’s first-order zone) parallel to Freeman’s [Social Networks 1 (1979) 215] centrality measures for complete (sociocentric) network data are considered. Degree-based centrality is in principle identical for egocentric and sociocentric network data. A closeness measure is uninformative for egocentric data, since all geodesic distances from ego to other nodes in the first-order zone are 1 by definition. The extent to which egocentric and sociocentric versions of Freeman’s betweenness centrality measure correspond is explored empirically. Across seventeen diverse networks, that correspondence is found to be relatively close—though variations in egocentric network composition do lead to some notable differences in egocentric and sociocentric betweennness. The findings suggest that research design has a relatively modest impact on assessing the relative betweenness of nodes, and that a betweenness measure based on egocentric network data could be a reliable substitute for Freeman’s betweenness measure when it is not practical to collect complete network data. However, differences in the research methods used in sociocentric and egocentric studies could lead to additional differences in the respective betweenness centrality measures.  相似文献   

15.
Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.  相似文献   

16.
Network analysis, a methodology derived from general systems' theory, can be utilized as a community mental health administrative-evaluation procedure. Evaluation parameters derived from analysis of patient data as they “flow” through a network of agency services, provide measures of systemic functioning. These parameters include “longest paths” and various ratio relationships as evaluation measures of service delivery. The limitations of network analysis are examined by means of conceptual analyses, and phenomena that emerged from research experience. The necessity for both quantitative and qualitative data to ensure a meaningful evaluation of mental health services is explained. Conclusions about the value of the network analysis approach are considered.  相似文献   

17.
《Social Networks》2005,27(1):73-88
This paper evaluates the reliability of measures of centrality and prominence of social networks among high school students. The authors present and discuss results from eight experiments. Four types of social support: (1) instrumental support, (2) informational support, (3) social companionship, and (4) emotional support—were measured three times within each class. Four measurement scales: (1) binary, (2) categorical, (3) categorical with labels and (4) line production—were applied. Reliability of in- and out-degree, in- and out-closeness, betweenness and flow betweenness was estimated by the Pearson correlation coefficient. Meta analysis of factors affecting the test-retest reliability of measures of centrality and prominence was done by multiple classification analysis. Results show that,
  • -Global measures (considering direct and indirect choices) are more sensitive to measurement errors than local measures (considering only direct choices).
  • -In-measures are more stable than out-measures.
  • -Among types of social support, emotional support gives the least stable measures of centrality and prominence, whereas social companionship gives the most stable results.
  • -The reliability of centrality and prominence measures is higher when the network is denser.
  相似文献   

18.
This study quantified the impact of high stream flows on reproductive activities of river chub (Nocomis micropogon). Using observed relationships between flow and reproductive activities, the number of predicted damaging flow events was compared between streams with extant river chub populations and urbanized streams. Monitoring the survivorship of river chub nests during 2013–2014 (N = 101) revealed consistent relationships between interval peak flow measured at flow gauges and the integrity of river chub nests within sites. Flow-mediated disruption of nests was frequent, and interval peak flows were significantly correlated with nest erosion rates. Logistic regression between fate of river chub nests and standardized peak flow (Qs) during monitoring intervals identified thresholds of peak flow corresponding to complete and partial destruction of river chub nests. Observed thresholds were used to predict the frequency of potentially damaging flows in urbanized versus river chub study streams, based on archival flow monitoring data. Repeated measures analysis revealed that the frequency of flows predicted to result in the loss of all nests was significantly higher in urbanized streams (F = 122.2; df = 1; P < 0.001 ). While key life history information needs to be determined to fully understand the impacts of high flows on river chub population dynamics, results indicate the disruption of nests through frequent high flows as a mechanism for the reduction of this important species in urbanized areas. Improved understanding of the interactions between stream processes and biota will aid in the design of specific stream protection and restoration strategies.  相似文献   

19.
Network centralization is a network index that measures the degree of dispersion of all node centrality scores in a network from the maximum centrality score obtained in the network. The Gil Schmidt power centrality index was developed for use in describing the political networks of Mexico, Gil and Schmidt [Gil, J., Schmidt, S., 1996a. The origin of the Mexican network of power. In: International Social Network Conference, Charleston, SC, USA, pp. 22–25; Gil, J., Schmidt, S., 1996b. The political network in Mexico. Social Networks 18, 355–381]. Upper bounds for network centralization, using the Gil Schmidt power centrality index, are derived for networks of fixed order and for when the network is bipartite, such as can arise from two mode data. In each case the networks that have maximum network centralization are described.  相似文献   

20.
Structural effects of network sampling coverage I: Nodes missing at random   总被引:1,自引:0,他引:1  
Network measures assume a census of a well-bounded population. This level of coverage is rarely achieved in practice, however, and we have only limited information on the robustness of network measures to incomplete coverage. This paper examines the effect of node-level missingness on 4 classes of network measures: centrality, centralization, topology and homophily across a diverse sample of 12 empirical networks. We use a Monte Carlo simulation process to generate data with known levels of missingness and compare the resulting network scores to their known starting values. As with past studies (0035 and 0135), we find that measurement bias generally increases with more missing data. The exact rate and nature of this increase, however, varies systematically across network measures. For example, betweenness and Bonacich centralization are quite sensitive to missing data while closeness and in-degree are robust. Similarly, while the tau statistic and distance are difficult to capture with missing data, transitivity shows little bias even with very high levels of missingness. The results are also clearly dependent on the features of the network. Larger, more centralized networks are generally more robust to missing data, but this is especially true for centrality and centralization measures. More cohesive networks are robust to missing data when measuring topological features but not when measuring centralization. Overall, the results suggest that missing data may have quite large or quite small effects on network measurement, depending on the type of network and the question being posed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号