首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article we study the coverage accuracy of one-sided bootstrap-t confidence intervals for the population variances combined with Hall's and Johnson's transformation. We compare the coverage accuracy of all suggested intervals and intervals based on the Chi-square statistic for variances of positively skewed distributions. In addition, we describe and discuss an application of the presented methods for measuring and analyzing revenue variability within the food retail industry. The results show that both Hall's transformation and Johnson's transformation approaches yield good coverage accuracy of the lower endpoint confidence intervals, better than method based on the Chi-square statistic. For the upper endpoint confidence intervals Hall's bootstrap-t method yields the best coverage accuracy when compared with other methods.  相似文献   

2.
In practice non-randomized conservative confidence intervals for the parameter of a discrete distribution are used instead of the randomized uniformly most accurate intervals. We suggest in this paper that a part of the data be used as the random mechanism to create “data-randomized” confidence intervals. A thoughtful utilization of the data leads to intervals that are shorter than the usual conservative intervals but avoids the arbitrariness of the randomized uniformly most accurate intervals. Examples are given using the binomial, Poisson, and extended hypergeometric distributions, as well as applications to a metched case-control study and a randomized clinical trial.  相似文献   

3.
The problem of building bootstrap confidence intervals for small probabilities with count data is addressed. The law of the independent observations is assumed to be a mixture of a given family of power series distributions. The mixing distribution is estimated by nonparametric maximum likelihood and the corresponding mixture is used for resampling. We build percentile-t and Efron percentile bootstrap confidence intervals for the probabilities and we prove their consistency in probability. The new theoretical results are supported by simulation experiments for Poisson and geometric mixtures. We compare percentile-t and Efron percentile bootstrap intervals with eight other bootstrap or asymptotic theory based intervals. It appears that Efron percentile bootstrap intervals outperform the competitors in terms of coverage probability and length.  相似文献   

4.
The author describes a method for improving standard “exact” confidence intervals in discrete distributions with respect to size while retaining correct level. The binomial, negative binomial, hypergeometric, and Poisson distributions are considered explicitly. Contrary to other existing methods, the author's solution possesses a natural nesting condition: if α < α', the 1 ‐ α' confidence interval is included in the 1 ‐ α interval. Nonparametric confidence intervals for a quantile are also considered.  相似文献   

5.
For a family of one-parameter discrete exponential type distributions, the higher order approximation of randomized confidence intervals derived from the optimum test is discussed. Indeed, it is shown that they can be asymptotically constructed by means of the Edgeworth expansion. The usefulness is seen from the numerical results in the case of Poisson and binomial distributions.  相似文献   

6.
In this article the existing methods for determining the approximate onesided confidence intervals on the positive linear combinations of two variances are examined. In addition, an iterative algorithm which can be used to obtain an 'exact' one-sided confidence intervals is presented.  相似文献   

7.
ABSTRACT

In this paper, we consider the problem of constructing non parametric confidence intervals for the mean of a positively skewed distribution. We suggest calibrated, smoothed bootstrap upper and lower percentile confidence intervals. For the theoretical properties, we show that the proposed one-sided confidence intervals have coverage probability α + O(n? 3/2). This is an improvement upon the traditional bootstrap confidence intervals in terms of coverage probability. A version smoothed approach is also considered for constructing a two-sided confidence interval and its theoretical properties are also studied. A simulation study is performed to illustrate the performance of our confidence interval methods. We then apply the methods to a real data set.  相似文献   

8.
In this article bootstrap confidence intervals of process capability index as suggested by Chen and Pearn [An application of non-normal process capability indices. Qual Reliab Eng Int. 1997;13:355–360] are studied through simulation when the underlying distributions are inverse Rayleigh and log-logistic distributions. The well-known maximum likelihood estimator is used to estimate the parameter. The bootstrap confidence intervals considered in this paper consists of various confidence intervals. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average widths of the bootstrap confidence intervals. Application examples on two distributions for process capability indices are provided for practical use.  相似文献   

9.
Confidence intervals are developed for the mode of a discrete unimodal distribution in the case where only a single observation is available. These intervals are centered on either the observation, X, or a weighted average of X with a constant, b, chosen by the investigator. Intervals are derived for nonrestricted unimodal distributions, for unimodal distributions with a symmetry property, and for a family of two-sided truncated geometric distributions.  相似文献   

10.
A new area of research interest is the computation of exact confidence limits or intervals for a scalar parameter of interest from discrete data by inverting a hypothesis test based on a studentized test statistic. See, for example, Chan and Zhang (1999), Agresti and Min (2001) and Agresti (2003) who deal with a difference of binomial probabilities and Agresti and Min (2002) who deal with an odds ratio. However, neither (1) a detailed analysis of the computational issues involved nor (2) a reliable method of computation that deals effectively with these issues is currently available. In this paper we solve these two problems for a very broad class of discrete data models. We suppose that the distribution of the data is determined by (,) where is a nuisance parameter vector. We also consider six different studentized test statistics. Our contributions to (1) are as follows. We show that the P-value resulting from the hypothesis test, considered as a function of the null-hypothesized value of , has both jump and drop discontinuities. Numerical examples are used to demonstrate that these discontinuities lead to the failure of simple-minded approaches to the computation of the confidence limit or interval. We also provide a new method for efficiently computing the set of all possible locations of these discontinuities. Our contribution to (2) is to provide a new and reliable method of computing the confidence limit or interval, based on the knowledge of this set.  相似文献   

11.
Due to a typesetting error, the second sentence in the proof of Theorem 2 on page 792 was garbled. It should read, “It suffices to consider confidence intervals when x = 1 is observed, although this phenomenon always occurs if the rejection regions involve probabilities from both tails.”  相似文献   

12.
13.
Confidence intervals for location parameters are expanded (in either direction) to some “crucial” points and the resulting increase in the confidence coefficient investigated.Particaular crucial points are chosen to illuminate some hypothesis testing problems.Special results are dervied for the normal distribution with estimated variance and, in particular, for the problem of classifiying treatments as better or worse than a control.For this problem the usual two-sided Dunnett procedure is seen to be inefficient.Suggestions are made for the use of already published tables for this problem.Mention is made of the use of expanded confidence intervals for all pairwise comparisons of treatments using an “honest ordering difference” rather than Tukey's “honest siginificant difference”.  相似文献   

14.
The lognormal distribution is currently used extensively to describe the distribution of positive random variables. This is especially the case with data pertaining to occupational health and other biological data. One particular application of the data is statistical inference with regards to the mean of the data. Other authors, namely Zou et al. (2009), have proposed procedures involving the so-called “method of variance estimates recovery” (MOVER), while an alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoorthy and Mathew (2003). In this paper we compare the performance of the MOVER-based confidence interval estimates and the generalized confidence interval procedure to coverage of credibility intervals obtained using Bayesian methodology using a variety of different prior distributions to estimate the appropriateness of each. An extensive simulation study is conducted to evaluate the coverage accuracy and interval width of the proposed methods. For the Bayesian approach both the equal-tail and highest posterior density (HPD) credibility intervals are presented. Various prior distributions (Independence Jeffreys' prior, Jeffreys'-Rule prior, namely, the square root of the determinant of the Fisher Information matrix, reference and probability-matching priors) are evaluated and compared to determine which give the best coverage with the most efficient interval width. The simulation studies show that the constructed Bayesian confidence intervals have satisfying coverage probabilities and in some cases outperform the MOVER and generalized confidence interval results. The Bayesian inference procedures (hypothesis tests and confidence intervals) are also extended to the difference between two lognormal means as well as to the case of zero-valued observations and confidence intervals for the lognormal variance. In the last section of this paper the bivariate lognormal distribution is discussed and Bayesian confidence intervals are obtained for the difference between two correlated lognormal means as well as for the ratio of lognormal variances, using nine different priors.  相似文献   

15.
A method for refining an equivariant binomial confidence procedure is presented which, when applied to an existing procedure, produces a new set of equivariant intervals that are uniformly superior. The family of procedures generated from this method constitute a complete class within the class of all equivariant procedures. In certain cases it is shown that this class is also minimal complete. Also, an optimally property, monotone minimaxity, is investigated, and monotone minimax procedures are constructed.  相似文献   

16.
Confidence intervals are constructed for real-valued parameter estimation in a general regression model with normal errors. When the error variance is known these intervals are optimal (in the sense of minimizing length subject to guaranteed probability of coverage) among all intervals estimates which are centered at a linear estimate of the parameter. When the error variance is unknown and the regression model is an approximately linear model (a class of models which permits bounded systematic departures from an underlying ideal model) then an independent estimate of variance is found and the intervals can then be appropriately scaled.  相似文献   

17.
Most interval estimates are derived from computable conditional distributions conditional on the data. In this article, we call the random variables having such conditional distributions confidence distribution variables and define their finite-sample breakdown values. Based on this, the definition of breakdown value of confidence intervals is introduced, which covers the breakdowns in both the coverage probability and interval length. High-breakdown confidence intervals are constructed by the structural method in location-scale families. Simulation results are presented to compare the traditional confidence intervals and their robust analogues.  相似文献   

18.
Burk at al (1984) gave a results concerning the comparison of the length of the two different confidence intervals for variance ratio, when the construction of the intervals was based on the principle of “equal tails”11. The purpose of this paper is to be solve the similar problem in case of the principle of “minimal length”.  相似文献   

19.
We construct bootstrap confidence intervals for smoothing spline estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from .exponential families. Several vari- ations of bootstrap confidence intervals are considered and compared. We find that the commonly used ootstrap percentile intervals are inferior to the T intervals and to intervals based on bootstrap estimation of mean squared errors. The best variations of the bootstrap confidence intervals behave similar to the well known Bayesian confidence intervals. These bootstrap confidence intervals have an average coverage probability across the function being estimated, as opposed to a pointwise property.  相似文献   

20.
The authors propose a new method for constructing a confidence interval for the expectation θ of a Poisson random variable. The interval they obtain cannot be shortened without the infimum over θ of the coverage probability falling below 1 ‐ α. In addition, the endpoints of the interval are strictly increasing functions of the observed variable. An easy‐to‐program algorithm is provided for computing this interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号