首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this article, we present a principal component Liu-type estimator (LTE) by combining the principal component regression (PCR) and LTE to deal with the multicollinearity problem. The superiority of the new estimator over the PCR estimator, the ordinary least squares estimator (OLSE) and the LTE are studied under the mean squared error matrix. The selection of the tuning parameter in the proposed estimator is also discussed. Finally, a numerical example is given to explain our theoretical results.  相似文献   

2.
Generalized least squares estimation of a system of seemingly unrelated regressions is usually a two-stage method: (1) estimation of cross-equation covariance matrix from ordinary least squares residuals for transforming data, and (2) application of least squares on transformed data. In presence of multicollinearity problem, conventionally ridge regression is applied at stage 2. We investigate the usage of ridge residuals at stage 1, and show analytically that the covariance matrix based on the least squares residuals does not always result in more efficient estimator. A simulation study and an application to a system of firms' gross investment support our finding.  相似文献   

3.
This article considers the unconditional asymptotic covariance matrix of the least squares estimator in the linear regression model with stochastic explanatory variables. The asymptotic covariance matrix of the least squares estimator of regression parameters is evaluated relative to the standard asymptotic covariance matrix when the joint distribution of the dependent and explanatory variables is in the class of elliptically symmetric distributions. An empirical example using financial data is presented. Numerical examples and simulation experiments are given to illustrate the difference of the two asymptotic covariance matrices.  相似文献   

4.
A new numerical method to solve the downdating problem (and variants thereof), namely removing the effect of some observations from the generalized least squares (GLS) estimator of the general linear model (GLM) after it has been estimated, is extensively investigated. It is verified that the solution of the downdated least squares problem can be obtained from the estimation of an equivalent GLM, where the original model is updated with the imaginary deleted observations. This updated GLM has a non positive definite dispersion matrix which comprises complex covariance values and it is proved herein to yield the same normal equations as the downdated model. Additionally, the problem of deleting observations from the seemingly unrelated regressions model is addressed, demonstrating the direct applicability of this method to other multivariate linear models. The algorithms which implement the novel downdating method utilize efficiently the previous computations from the estimation of the original model. As a result, the computational cost is significantly reduced. This shows the great usability potential of the downdating method in computationally intensive problems. The downdating algorithms have been applied to real and synthetic data to illustrate their efficiency.  相似文献   

5.
Summary. A new estimator of the regression parameters is introduced in a multivariate multiple-regression model in which both the vector of explanatory variables and the vector of response variables are assumed to be random. The affine equivariant estimate matrix is constructed using the sign covariance matrix (SCM) where the sign concept is based on Oja's criterion function. The influence function and asymptotic theory are developed to consider robustness and limiting efficiencies of the SCM regression estimate. The estimate is shown to be consistent with a limiting multinormal distribution. The influence function, as a function of the length of the contamination vector, is shown to be linear in elliptic cases; for the least squares (LS) estimate it is quadratic. The asymptotic relative efficiencies with respect to the LS estimate are given in the multivariate normal as well as the t -distribution cases. The SCM regression estimate is highly efficient in the multivariate normal case and, for heavy-tailed distributions, it performs better than the LS estimate. Simulations are used to consider finite sample efficiencies with similar results. The theory is illustrated with an example.  相似文献   

6.
Modeling prior information as a fuzzy set and using Zadeh’s extension principle, a general approach is presented how to rate linear affine estimators in linear regression. This general approach is applied to fuzzy prior information sets given by ellipsoidal α-cuts. Here, in an important and meaningful subclass, a uniformly best linear affine estimator can be determined explicitly. Surprisingly, such a uniformly best linear affine estimator is optimal with respect to a corresponding relative squared error approach. Two illustrative special cases are discussed, where a generalized least squares estimator on the one hand and a general ridge or Kuks–Olman estimator on the other hand turn out to be uniformly best.  相似文献   

7.
In this article, we employ a regression formulation to estimate the high-dimensional covariance matrix for a given network structure. Using prior information contained in the network relationships, we model the covariance as a polynomial function of the symmetric adjacency matrix. Accordingly, the problem of estimating a high-dimensional covariance matrix is converted to one of estimating low dimensional coefficients of the polynomial regression function, which we can accomplish using ordinary least squares or maximum likelihood. The resulting covariance matrix estimator based on the maximum likelihood approach is guaranteed to be positive definite even in finite samples. Under mild conditions, we obtain the theoretical properties of the resulting estimators. A Bayesian information criterion is also developed to select the order of the polynomial function. Simulation studies and empirical examples illustrate the usefulness of the proposed methods.  相似文献   

8.
Linear vector autoregressive (VAR) models where the innovations could be unconditionally heteroscedastic are considered. The volatility structure is deterministic and quite general, including breaks or trending variances as special cases. In this framework we propose ordinary least squares (OLS), generalized least squares (GLS) and adaptive least squares (ALS) procedures. The GLS estimator requires the knowledge of the time-varying variance structure while in the ALS approach the unknown variance is estimated by kernel smoothing with the outer product of the OLS residual vectors. Different bandwidths for the different cells of the time-varying variance matrix are also allowed. We derive the asymptotic distribution of the proposed estimators for the VAR model coefficients and compare their properties. In particular we show that the ALS estimator is asymptotically equivalent to the infeasible GLS estimator. This asymptotic equivalence is obtained uniformly with respect to the bandwidth(s) in a given range and hence justifies data-driven bandwidth rules. Using these results we build Wald tests for the linear Granger causality in mean which are adapted to VAR processes driven by errors with a nonstationary volatility. It is also shown that the commonly used standard Wald test for the linear Granger causality in mean is potentially unreliable in our framework (incorrect level and lower asymptotic power). Monte Carlo experiments illustrate the use of the different estimation approaches for the analysis of VAR models with time-varying variance innovations.  相似文献   

9.
In a linear regression model an estimator of the unknown coefficients is considered which, in special cases, includes the least squares estimator. In the ease of stable symmetric error distribution and by means of a certain monotony relation between distribution functions optimality of this estimator is proved and the designing problem is investigated. A robustness property of optimal designs against the designing criterion and some conclusions are given concerning the least squares estimator in the case of G- and C-optimality.  相似文献   

10.
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined.  相似文献   

11.
General mixed linear models for experiments conducted over a series of sltes and/or years are described. The ordinary least squares (OLS) estlmator is simple to compute, but is not the best unbiased estimator. Also, the usuaL formula for the varlance of the OLS estimator is not correct and seriously underestimates the true variance. The best linear unbiased estimator is the generalized least squares (GLS) estimator. However, t requires an inversion of the variance-covariance matrix V, whlch is usually of large dimension. Also, in practice, V is unknown.

We presented an estlmator [Vcirc] of the matrix V using the estimators of variance components [for sites, blocks (sites), etc.]. We also presented a simple transformation of the data, such that an ordinary least squares regression of the transformed data gives the estimated generalized least squares (EGLS) estimator. The standard errors obtained from the transformed regression serve as asymptotic standard errors of the EGLS estimators. We also established that the EGLS estlmator is unbiased.

An example of fitting a linear model to data for 18 sites (environments) located in Brazil is given. One of the site variables (soil test phosphorus) was measured by plot rather than by site and this established the need for a covariance model such as the one used rather than the usual analysis of variance model. It is for this variable that the resulting parameter estimates did not correspond well between the OLS and EGLS estimators. Regression statistics and the analysis of variance for the example are presented and summarized.  相似文献   

12.
We consider the pooled cross-sectional and time series regression model when the disturbances follow a serially correlated one-way error components. In this context we discovered that the first difference estimator for the regression coefficients is equivalent to the generalized least squares estimator irrespective of the particular form of the regressor matrix when the disturbances are generated by a first order autoregressive process where the autocorrelation is close to unity.  相似文献   

13.
We propose a robust estimator in the errors-in-variables model using the least trimmed squares estimator. We call this estimator the orthogonal least trimmed squares (OLTS) estimator. We show that the OLTS estimator has the high breakdown point and appropriate equivariance properties. We develop an algorithm for the OLTS estimate. Simulations are performed to compare the efficiencies of the OLTS estimates with the total least squares (TLS) estimates and a numerical example is given to illustrate the effectiveness of the estimate.  相似文献   

14.
Two often-quoted necessary and sufficient conditions for ordinary least squares estimators to be best linear unbiased estimators are described. Another necessary and sufficient condition is described, providing an additional tool for checking to see whether the covariance matrix of a given linear model is such that the ordinary least squares estimator is also the best linear unbiased estimator. The new condition is used to show that one of the two published conditions is only a sufficient condition.  相似文献   

15.
Compositional data are known as a sort of complex multidimensional data with the feature that reflect the relative information rather than absolute information. There are a variety of models for regression analysis with compositional variables. Similar to the traditional regression analysis, the heteroskedasticity still exists in these models. However, the existing heteroskedastic regression analysis methods cannot apply in these models with compositional error term. In this paper, we mainly study the heteroskedastic linear regression model with compositional response and covariates. The parameter estimator is obtained through weighted least squares method. For the hypothesis test of parameter, the test statistic is based on the original least squares estimator and corresponding heteroskedasticity-consistent covariance matrix estimator. When the proposed method is applied to both simulation and real example, we use the original least squares method as a comparison during the whole process. The results implicate the model's practicality and effectiveness in regression analysis with heteroskedasticity.  相似文献   

16.

We incorporate new techniques for obtaining unbiased estimators of gradients from single simulations of stochastic systems in optimization procedures. We develop an "enhanced" least squares estimator of the optimum which incorporates information about both the function and its gradient and improves substantially on techniques which use only the function. We also propose a sequential design to use with the enhanced least squares estimator to optimize a regression function when it is evaluated by simulation.  相似文献   

17.
Eva Fišerová 《Statistics》2013,47(3):241-251
We consider an unbiased estimator of a function of mean value parameters, which is not efficient. This inefficient estimator is correlated with a residual vector. Thus, if a unit dispersion is unknown, it is impossible to determine the correct confidence region for a function of mean value parameters via a standard estimator of an unknown dispersion with the exception of the case when the ordinary least squares (OLS) estimator is considered in a model with a special covariance structure such that the OLS and the generalized least squares (GLS) estimator are the same, that is the OLS estimator is efficient. Two different estimators of a unit dispersion independent of an inefficient estimator are derived in a singular linear statistical model. Their quality was verified by simulations for several types of experimental designs. Two new estimators of the unit dispersion were compared with the standard estimators based on the GLS and the OLS estimators of the function of the mean value parameters. The OLS estimator was considered in the incorrect model with a different covariance matrix such that the originally inefficient estimator became efficient. The numerical examples led to a slightly surprising result which seems to be due to data behaviour. An example from geodetic practice is presented in the paper.  相似文献   

18.
The finite sample performance of the rank estimator of regression coefficients obtained using the iteratively reweighted least squares (IRLS) of Sievers and Abebe (2004) is evaluated. Efficiency comparisons show that the IRLS method does quite well in comparison to least squares or the traditional rank estimates in cases of moderate-tailed error distributions; however, the IRLS method does not appear to be suitable for heavy-tailed data. Moreover, our results show that the IRLS estimator will have an unbounded influence function even if we use an initial estimator with a bounded influence function.  相似文献   

19.
We propose a new robust regression estimator using data partition technique and M estimation (DPM). The data partition technique is designed to define a small fixed number of subsets of the partitioned data set and to produce corresponding ordinary least square (OLS) fits in each subset, contrary to the resampling technique of existing robust estimators such as the least trimmed squares estimator. The proposed estimator shares a common strategy with the median ball algorithm estimator that is obtained from the OLS trial fits only on a fixed number of subsets of the data. We examine performance of the DPM estimator in the eleven challenging data sets and simulation studies. We also compare the DPM with the five commonly used robust estimators using empirical convergence rates relative to the OLS for clean data, robustness through mean squared error and bias, masking and swamping probabilities, the ability of detecting the known outliers, and the regression and affine equivariances.  相似文献   

20.
In regression analysis, to overcome the problem of multicollinearity, the r ? k class estimator is proposed as an alternative to the ordinary least squares estimator which is a general estimator including the ordinary ridge regression estimator, the principal components regression estimator and the ordinary least squares estimator. In this article, we derive the necessary and sufficient conditions for the superiority of the r ? k class estimator over each of these estimators under the Mahalanobis loss function by the average loss criterion. Then, we compare these estimators with each other using the same criterion. Also, we suggest to test to verify if these conditions are indeed satisfied. Finally, a numerical example and a Monte Carlo simulation are done to illustrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号