首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods for comparing designs for a random (or mixed) linear model have focused primarily on criteria based on single-valued functions. In general, these functions are difficult to use, because of their complex forms, in addition to their dependence on the model's unknown variance components. In this paper, a graphical approach is presented for comparing designs for random models. The one-way model is used for illustration. The proposed approach is based on using quantiles of an estimator of a function of the variance components. The dependence of these quantiles on the true values of the variance components is depicted by plotting the so-called quantile dispersion graphs (QDGs), which provide a comprehensive picture of the quality of estimation obtained with a given design. The QDGs can therefore be used to compare several candidate designs. Two methods of estimation of variance components are considered, namely analysis of variance and maximum-likelihood estimation.  相似文献   

2.
The internal pilot study design allows for modifying the sample size during an ongoing study based on a blinded estimate of the variance thus maintaining the trial integrity. Various blinded sample size re‐estimation procedures have been proposed in the literature. We compare the blinded sample size re‐estimation procedures based on the one‐sample variance of the pooled data with a blinded procedure using the randomization block information with respect to bias and variance of the variance estimators, and the distribution of the resulting sample sizes, power, and actual type I error rate. For reference, sample size re‐estimation based on the unblinded variance is also included in the comparison. It is shown that using an unbiased variance estimator (such as the one using the randomization block information) for sample size re‐estimation does not guarantee that the desired power is achieved. Moreover, in situations that are common in clinical trials, the variance estimator that employs the randomization block length shows a higher variability than the simple one‐sample estimator and in turn the sample size resulting from the related re‐estimation procedure. This higher variability can lead to a lower power as was demonstrated in the setting of noninferiority trials. In summary, the one‐sample estimator obtained from the pooled data is extremely simple to apply, shows good performance, and is therefore recommended for application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In robust parameter design, variance effects and mean effects in a factorial experiment are modelled simultaneously. If variance effects are present in a model, correlations are induced among the naive estimators of the mean effects. A simple normal quantile plot of the mean effects may be misleading because the mean effects are no longer iid under the null hypothesis that they are zero. Adjusted quantiles are computed for the case when one variance effect is significant and examples of 8-run and 16-run fractional factorial designs are examined in detail. We find that the usual normal quantiles are similar to adjusted quantiles for all but the largest and smallest ordered effects for which they are conservative. Graphically, the qualitative difference between the two sets of quantiles is negligible (even in the presence of large variance effects) and we conclude that normal probability plots are robust in the presence of variance effects.  相似文献   

4.
Adaptive cluster sampling (ACS) is considered to be the most suitable sampling design for the estimation of rare, hidden, clustered and hard-to-reach population units. The main characteristic of this design is that it may select more meaningful samples and provide more efficient estimates for the field investigator as compare to the other conventional sampling designs. In this paper, we proposed a generalized estimator with a single auxiliary variable for the estimation of rare, hidden and highly clustered population variance under ACS design. The expressions of approximate bias and mean square error are derived and the efficiency comparisons have been made with other existing estimators. A numerical study is carried out on a real population of aquatic birds together with an artificial population generated by Poisson cluster process. Related results of numerical study show that the proposed generalized variance estimator is able to provide considerably better results over the competing estimators.  相似文献   

5.
Finding an interval estimation procedure for the variance of a population that achieves a specified confidence level can be problematic. If the distribution of the population is known, then a distribution-dependent interval for the variance can be obtained by considering a power transformation of the sample variance. Simulation results suggest that this method produces intervals for the variance that maintain the nominal probability of coverage for a wide variety of distributions. If the underlying distribution is unknown, then the power itself must be estimated prior to forming the endpoints of the interval. The result is a distribution-free confidence interval estimator of the population variance. Simulation studies indicate that the power transformation method compares favorably to the logarithmic transformation method and the nonparametric bias-corrected and accelerated bootstrap method for moderately sized samples. However, two applications, one in forestry and the other in health sciences, demonstrate that no single method is best for all scenarios.  相似文献   

6.
We propose a novel “bias-corrected realized variance” (BCRV) estimator based upon the appropriate re-weighting of two realized variances calculated at different sampling frequencies. Our bias-correction methodology is found to be extremely accurate, with the finite sample variance being significantly minimized. In our Monte Carlo experiments and a finite sample MSE comparison of alternative estimators, the performance of our straightforward BCRV estimator is shown to be comparable to other widely-used integrated variance estimators. Given its simplicity, our BCRV estimator is likely to appeal to researchers and practitioners alike for the estimation of integrated variance.  相似文献   

7.
The estimation of the distribution functon of a random variable X measured with error is studied. Let the i-th observation on X be denoted by YiXii where εi is the measuremen error. Let {Yi} (i=1,2,…,n) be a sample of independent observations. It is assumed that {Xi} and {∈i} are mutually independent and each is identically distributed. As is standard in the literature for this problem, the distribution of e is assumed known in the development of the methodology. In practice, the measurement error distribution is estimated from replicate observations.

The proposed semiparametric estimator is derived by estimating the quantises of X on a set of n transformed V-values and smoothing the estimated quantiles using a spline function. The number of parameters of the spline function is determined by the data with a simple criterion, such as AIC. In a simulation study, the semiparametric estimator dominates an optimal kernel estimator and a normal mixture estimator for a wide class of densities.

The proposed estimator is applied to estimate the distribution function of the mean pH value in a field plot. The density function of the measurement error is estimated from repeated measurements of the pH values in a plot, and is treated as known for the estimation of the distribution function of the mean pH value.  相似文献   

8.
Summary.  The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs. We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.  相似文献   

9.
A computationally simple method for estimating finite-population quantiles in the presence of auxiliary information is proposed. An algorithm is also found for implementing related approaches for estimating quantiles, including that of Rao et al. (1990), obtained from inverting difference-type estimators of the distribution function. The proposed estimation procedure can be seen as a one-step iteration of the suggested algorithm and is asymptotically equivalent to the limiting estimator. In particular, the proposed method yields a simple and efficient way of approximating Rao et al.'s estimator. Simulation studies based on two real populations show that the approximation can be very satisfactory even for small to moderate samples.  相似文献   

10.
Summary The bootstrap estimation for variance and its robustness in linear regression is considered. It is shown that the bootstrap approximation to the distribution of the estimator of the error variance, based on the least squared estimator, is robust over the Mallows neighborhood. Partially supported by Univeristy of Kansas general research fund.  相似文献   

11.
A technique for estimating the quantiles or percentiles of a distribution is developed. The parametric form of the distribution is assumed unknown. The estimation procedure is based on a kernel estimator of a probability density function and on aquantile estimator suggested by Harrell and Davis (1982). Simulation studies show that estimation of quantiles in moderately heavyto heavy tails of a distribution is substantially improved by use of the technique.  相似文献   

12.
We propose a variational mode decomposition approach to estimate the variance function in a nonparametric heteroscedastic fixed design regression model. A data-driven estimator is constructed by applying variational mode decomposition technique to the difference-based initial estimates. The numerical results show that the proposed estimator performs better than the existing variance estimation procedures in the mean square sense.  相似文献   

13.
ABSTRACT

It has been shown that equilibrium restrictions in a search model can be used to identify quantiles of the search cost distribution from observedprices alone. These quantiles can be difficult to estimate in practice. This article uses a minimum distance approach to estimate them that is easy to compute. A version of our estimator is a solution to a nonlinear least-square problem that can be straightforwardly programmed on softwares such as STATA. We show our estimator is consistent and has an asymptotic normal distribution. Its distribution can be consistently estimated by a bootstrap. Our estimator can be used to estimate the cost distribution nonparametrically on a larger support when prices from heterogenous markets are available. We propose a two-step sieve estimator for that case. The first step estimates quantiles from each market. They are used in the second step as generated variables to perform nonparametric sieve estimation. We derive the uniform rate of convergence of the sieve estimator that can be used to quantify the errors incurred from interpolating data across markets. To illustrate we use online bookmaking odds for English football leagues’ matches (as prices) and find evidence that suggests search costs for consumers have fallen following a change in the British law that allows gambling operators to advertise more widely. Supplementary materials for this article are available online.  相似文献   

14.
The estimation of the variance for the GREG (general regression) estimator by weighted residuals is widely accepted as a method which yields estimators with good conditional properties. Since the optimal (regression) estimator shares the properties of GREG estimators which are used in the construction of weighted variance estimators, we introduce the weighting procedure also for estimating the variance of the optimal estimator. This method of variance estimation was originally presented in a seemingly ad hoc manner, and we shall discuss it from a conditional point of view and also look at an alternative way of utilizing the weights. Examples that stress conditional behaviour of estimators are then given for elementary sampling designs such as simple random sampling, stratified simple random sampling and Poisson sampling, where for the latter design we have conducted a small simulation study.  相似文献   

15.
Traditional portfolio optimization has often been criticized for not taking estimation risk into account. Estimation risk is mainly driven by the parameter uncertainty regarding the expected asset returns rather than their variances and covariances. The global minimum variance portfolio has been advocated by many authors as an appropriate alternative to the tangential portfolio. This is because there are no expectations which have to be estimated and thus the impact of estimation errors can be substantially reduced. However, in many practical situations an investor is not willing to choose the global minimum variance portfolio but he wants to minimize the variance of the portfolio return under specific constraints for the portfolio weights. Such a portfolio is called local minimum variance portfolio. Small-sample hypothesis tests for global and local minimum variance portfolios are derived and the exact distributions of the estimated portfolio weights are calculated in the present work. The first two moments of the estimator for the expected portfolio returns are also provided and the presented instruments are illustrated by an empirical study.  相似文献   

16.
Abstract

Many researchers used auxiliary information together with survey variable to improve the efficiency of population parameters like mean, variance, total and proportion. Ratio and regression estimation are the most commonly used methods that utilized auxiliary information in different ways to get the maximum benefits in the form of high precision of the estimators. Thompson first introduced the concept of Adaptive cluster sampling, which is an appropriate technique for collecting the samples from rare and clustered populations. In this article, a generalized exponential type estimator is proposed and its properties have been studied for the estimation of rare and highly clustered population variance using single auxiliary information. A numerical study is carried out on a real and artificial population to judge the performance of the proposed estimator over the competing estimators. It is shown that the proposed generalized exponential type estimator is more efficient than the adaptive and non adaptive estimators under conventional sampling design.  相似文献   

17.
The stability of a slightly modified version of the usual jackknife variance estimator is evaluated exactly in small samples under a suitable linear regression model and compared with that of two different linearization variance estimators. Depending on the degree of heteroscedasticity of the error variance in the model, the stability of the jackknife variance estimator is found to be somewhat comparable to that of one or the other of the linearization variance estimators under conditions especially favorable to ratio estimation (i.e., regression approximately through the origin with a relatively small coefficient of variation in the x population). When these conditions do not hold, however, the jackknife variance estimator is found to be less stable than either of the linearization variance estimators.  相似文献   

18.
There are a large number of different definitions used for sample quantiles in statistical computer packages. Often within the same package one definition will be used to compute a quantile explicitly, while other definitions may be used when producing a boxplot, a probability plot, or a QQ plot. We compare the most commonly implemented sample quantile definitions by writing them in a common notation and investigating their motivation and some of their properties. We argue that there is a need to adopt a standard definition for sample quantiles so that the same answers are produced by different packages and within each package. We conclude by recommending that the median-unbiased estimator be used because it has most of the desirable properties of a quantile estimator and can be defined independently of the underlying distribution.  相似文献   

19.
Providing certain parameters are known, almost any linear map from RP to R1 can be adjusted to yield a consistent and unbiased estimator in the context of estimating the mixing proportion θ on the basis of an unclassified sample of observations taken from a mixture of two p-dimensional distributions in proportions θ and 1-θ. Attention is focused on an estimator proposed recently, θ, which has minimum variance over all such linear maps. Unfortunately, the form of θ depends on the means of the component distributions and the covariance matrix of the mixture distribution. The effect of using appropriate sample estimates for these unknown parameters in forming θ is investigated by deriving the asymptotic mean and variance of the resulting estimator. The relative efficiency of this estimator under normality is derived. Also, a study is undertaken of the performance of a similar type of estimator appropriate in the context where an observed data vector is not an observation from either one or the other onent distributions, but is recorded as an integrated measurement over a surface area which is a mixture of two categories whose characteristics have different statistical distributions.The asymptotic bias in this case is compared with some available practical results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号