首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a method for estimating parameters in generalized linear models with missing covariates and a non-ignorable missing data mechanism. We use a multinomial model for the missing data indicators and propose a joint distribution for them which can be written as a sequence of one-dimensional conditional distributions, with each one-dimensional conditional distribution consisting of a logistic regression. We allow the covariates to be either categorical or continuous. The joint covariate distribution is also modelled via a sequence of one-dimensional conditional distributions, and the response variable is assumed to be completely observed. We derive the E- and M-steps of the EM algorithm with non-ignorable missing covariate data. For categorical covariates, we derive a closed form expression for the E- and M-steps of the EM algorithm for obtaining the maximum likelihood estimates (MLEs). For continuous covariates, we use a Monte Carlo version of the EM algorithm to obtain the MLEs via the Gibbs sampler. Computational techniques for Gibbs sampling are proposed and implemented. The parametric form of the assumed missing data mechanism itself is not `testable' from the data, and thus the non-ignorable modelling considered here can be viewed as a sensitivity analysis concerning a more complicated model. Therefore, although a model may have `passed' the tests for a certain missing data mechanism, this does not mean that we have captured, even approximately, the correct missing data mechanism. Hence, model checking for the missing data mechanism and sensitivity analyses play an important role in this problem and are discussed in detail. Several simulations are given to demonstrate the methodology. In addition, a real data set from a melanoma cancer clinical trial is presented to illustrate the methods proposed.  相似文献   

2.
The EM algorithm is often used for finding the maximum likelihood estimates in generalized linear models with incomplete data. In this article, the author presents a robust method in the framework of the maximum likelihood estimation for fitting generalized linear models when nonignorable covariates are missing. His robust approach is useful for downweighting any influential observations when estimating the model parameters. To avoid computational problems involving irreducibly high‐dimensional integrals, he adopts a Metropolis‐Hastings algorithm based on a Markov chain sampling method. He carries out simulations to investigate the behaviour of the robust estimates in the presence of outliers and missing covariates; furthermore, he compares these estimates to the classical maximum likelihood estimates. Finally, he illustrates his approach using data on the occurrence of delirium in patients operated on for abdominal aortic aneurysm.  相似文献   

3.
The multivariate t linear mixed model (MtLMM) has been recently proposed as a robust tool for analysing multivariate longitudinal data with atypical observations. Missing outcomes frequently occur in longitudinal research even in well controlled situations. As a powerful alternative to the traditional expectation maximization based algorithm employing single imputation, we consider a Bayesian analysis of the MtLMM to account for the uncertainties of model parameters and missing outcomes through multiple imputation. An inverse Bayes formulas sampler coupled with Metropolis-within-Gibbs scheme is used to effectively draw the posterior distributions of latent data and model parameters. The techniques for multiple imputation of missing values, estimation of random effects, prediction of future responses, and diagnostics of potential outliers are investigated as well. The proposed methodology is illustrated through a simulation study and an application to AIDS/HIV data.  相似文献   

4.
This article deals with model comparison as an essential part of generalized linear modelling in the presence of covariates missing not at random (MNAR). We provide an evaluation of the performances of some of the popular model selection criteria, particularly of deviance information criterion (DIC) and weighted L (WL) measure, for comparison among a set of candidate MNAR models. In addition, we seek to provide deviance and quadratic loss-based model selection criteria with alternative penalty terms targeting directly the MNAR models. This work is motivated by the need in the literature to understand the performances of these important model selection criteria for comparison among a set of MNAR models. A Monte Carlo simulation experiment is designed to assess the finite sample performances of these model selection criteria in the context of interest under different scenarios for missingness amounts. Some naturally driven DIC and WL extensions are also discussed and evaluated.  相似文献   

5.
Nonlinear mixed‐effect models are often used in the analysis of longitudinal data. However, it sometimes happens that missing values for some of the model covariates are not purely random. Motivated by an application to HTV viral dynamics, where this situation occurs, the author considers likelihood inference for this type of problem. His approach involves a Monte Carlo EM algorithm, along with a Gibbs sampler and rejection/importance sampling methods. A concrete application is provided.  相似文献   

6.
We develop a hierarchical Bayesian approach for inference in random coefficient dynamic panel data models. Our approach allows for the initial values of each unit's process to be correlated with the unit-specific coefficients. We impose a stationarity assumption for each unit's process by assuming that the unit-specific autoregressive coefficient is drawn from a logitnormal distribution. Our method is shown to have favorable properties compared to the mean group estimator in a Monte Carlo study. We apply our approach to analyze energy and protein intakes among individuals from the Philippines.  相似文献   

7.
A Bayesian approach is developed for analysing item response models with nonignorable missing data. The relevant model for the observed data is estimated concurrently in conjunction with the item response model for the missing-data process. Since the approach is fully Bayesian, it can be easily generalized to more complicated and realistic models, such as those models with covariates. Furthermore, the proposed approach is illustrated with item response data modelled as the multidimensional graded response models. Finally, a simulation study is conducted to assess the extent to which the bias caused by ignoring the missing-data mechanism can be reduced.  相似文献   

8.
Missing covariates data is a common issue in generalized linear models (GLMs). A model-based procedure arising from properly specifying joint models for both the partially observed covariates and the corresponding missing indicator variables represents a sound and flexible methodology, which lends itself to maximum likelihood estimation as the likelihood function is available in computable form. In this paper, a novel model-based methodology is proposed for the regression analysis of GLMs when the partially observed covariates are categorical. Pair-copula constructions are used as graphical tools in order to facilitate the specification of the high-dimensional probability distributions of the underlying missingness components. The model parameters are estimated by maximizing the weighted log-likelihood function by using an EM algorithm. In order to compare the performance of the proposed methodology with other well-established approaches, which include complete-cases and multiple imputation, several simulation experiments of Binomial, Poisson and Normal regressions are carried out under both missing at random and non-missing at random mechanisms scenarios. The methods are illustrated by modeling data from a stage III melanoma clinical trial. The results show that the methodology is rather robust and flexible, representing a competitive alternative to traditional techniques.  相似文献   

9.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

10.
Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model‐based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model‐based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We discuss and evaluate bootstrap algorithms for obtaining confidence intervals for parameters in Generalized Linear Models when the data are correlated. The methods are based on a stratified bootstrap and are suited to correlation occurring within “blocks” of data (e.g., individuals within a family, teeth within a mouth, etc.). Application of the intervals to data from a Dutch follow-up study on preterm infants shows the corroborative usefulness of the intervals, while the intervals are seen to be a powerful diagnostic in studying annual measles data. In a simulation study, we compare the coverage rates of the proposed intervals with existing methods (e.g., via Generalized Estimating Equations). In most cases, the bootstrap intervals are seen to perform better than current methods, and are produced in an automatic fashion, so that the user need not know (or have to guess) the dependence structure within a block.  相似文献   

12.
In this paper, a generalized partially linear model (GPLM) with missing covariates is studied and a Monte Carlo EM (MCEM) algorithm with penalized-spline (P-spline) technique is developed to estimate the regression coefficients and nonparametric function, respectively. As classical model selection procedures such as Akaike's information criterion become invalid for our considered models with incomplete data, some new model selection criterions for GPLMs with missing covariates are proposed under two different missingness mechanism, say, missing at random (MAR) and missing not at random (MNAR). The most attractive point of our method is that it is rather general and can be extended to various situations with missing observations based on EM algorithm, especially when no missing data involved, our new model selection criterions are reduced to classical AIC. Therefore, we can not only compare models with missing observations under MAR/MNAR settings, but also can compare missing data models with complete-data models simultaneously. Theoretical properties of the proposed estimator, including consistency of the model selection criterions are investigated. A simulation study and a real example are used to illustrate the proposed methodology.  相似文献   

13.
This paper considers quantile regression models using an asymmetric Laplace distribution from a Bayesian point of view. We develop a simple and efficient Gibbs sampling algorithm for fitting the quantile regression model based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the resulting Gibbs sampler can be accomplished by sampling from either normal or generalized inverse Gaussian distribution. We also discuss some possible extensions of our approach, including the incorporation of a scale parameter, the use of double exponential prior, and a Bayesian analysis of Tobit quantile regression. The proposed methods are illustrated by both simulated and real data.  相似文献   

14.
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure.  相似文献   

15.
In this paper, we develop Bayesian methodology and computational algorithms for variable subset selection in Cox proportional hazards models with missing covariate data. A new joint semi-conjugate prior for the piecewise exponential model is proposed in the presence of missing covariates and its properties are examined. The covariates are assumed to be missing at random (MAR). Under this new prior, a version of the Deviance Information Criterion (DIC) is proposed for Bayesian variable subset selection in the presence of missing covariates. Monte Carlo methods are developed for computing the DICs for all possible subset models in the model space. A Bone Marrow Transplant (BMT) dataset is used to illustrate the proposed methodology.  相似文献   

16.
Semiparametric models provide a more flexible form for modeling the relationship between the response and the explanatory variables. On the other hand in the literature of modeling for the missing variables, canonical form of the probability of the variable being missing (p) is modeled taking a fully parametric approach. Here we consider a regression spline based semiparametric approach to model the missingness mechanism of nonignorably missing covariates. In this model the relationship between the suitable canonical form of p (e.g. probit p) and the missing covariate is modeled through several splines. A Bayesian procedure is developed to efficiently estimate the parameters. A computationally advantageous prior construction is proposed for the parameters of the semiparametric part. A WinBUGS code is constructed to apply Gibbs sampling to obtain the posterior distributions. We show through an extensive Monte Carlo simulation experiment that response model coefficent estimators maintain better (when the true missingness mechanism is nonlinear) or equivalent (when the true missingness mechanism is linear) bias and efficiency properties with the use of proposed semiparametric missingness model compared to the conventional model.  相似文献   

17.
In this article, dichotomous variables are used to compare between linear and nonlinear Bayesian structural equation models. Gibbs sampling method is applied for estimation and model comparison. Statistical inferences that involve estimation of parameters and their standard deviations and residuals analysis for testing the selected model are discussed. Hidden continuous normal distribution (censored normal distribution) is used to solve the problem of dichotomous variables. The proposed procedure is illustrated by a simulation data obtained from R program. Analyses are done by using R2WinBUGS package in R-program.  相似文献   

18.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

19.
Bayesian selection of variables is often difficult to carry out because of the challenge in specifying prior distributions for the regression parameters for all possible models, specifying a prior distribution on the model space and computations. We address these three issues for the logistic regression model. For the first, we propose an informative prior distribution for variable selection. Several theoretical and computational properties of the prior are derived and illustrated with several examples. For the second, we propose a method for specifying an informative prior on the model space, and for the third we propose novel methods for computing the marginal distribution of the data. The new computational algorithms only require Gibbs samples from the full model to facilitate the computation of the prior and posterior model probabilities for all possible models. Several properties of the algorithms are also derived. The prior specification for the first challenge focuses on the observables in that the elicitation is based on a prior prediction y 0 for the response vector and a quantity a 0 quantifying the uncertainty in y 0. Then, y 0 and a 0 are used to specify a prior for the regression coefficients semi-automatically. Examples using real data are given to demonstrate the methodology.  相似文献   

20.
The ordinal probit, univariate or multivariate, is a generalized linear model (GLM) structure that arises frequently in such disparate areas of statistical applications as medicine and econometrics. Despite the straightforwardness of its implementation using the Gibbs sampler, the ordinal probit may present challenges in obtaining satisfactory convergence.We present a multivariate Hastings-within-Gibbs update step for generating latent data and bin boundary parameters jointly, instead of individually from their respective full conditionals. When the latent data are parameters of interest, this algorithm substantially improves Gibbs sampler convergence for large datasets. We also discuss Monte Carlo Markov chain (MCMC) implementation of cumulative logit (proportional odds) and cumulative complementary log-log (proportional hazards) models with latent data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号