共查询到20条相似文献,搜索用时 33 毫秒
1.
Tomáš Hobza Domingo Morales 《Journal of Statistical Computation and Simulation》2013,83(11):2160-2177
Statistical agencies are interested to report precise estimates of linear parameters from small areas. This goal can be achieved by using model-based inference. In this sense, random regression coefficient models provide a flexible way of modelling the relationship between the target and the auxiliary variables. Because of this, empirical best linear unbiased predictor (EBLUP) estimates based on these models are introduced. A closed-formula procedure to estimate the mean-squared error of the EBLUP estimators is also given and empirically studied. Results of several simulation studies are reported as well as an application to the estimation of household normalized net annual incomes in the Spanish Living Conditions Survey. 相似文献
2.
《Journal of Statistical Computation and Simulation》2012,82(6):783-795
Binary data are often of interest in business surveys, particularly when the aim is to characterize grouping in the businesses making up the survey population. When small area estimates are required for such binary data, use of standard estimation methods based on linear mixed models (LMMs) becomes problematic. We explore two model-based techniques of small area estimation for small area proportions, the empirical best predictor (EBP) under a generalized linear mixed model and the model-based direct estimator (MBDE) under a population-level LMM. Our empirical results show that both the MBDE and the EBP perform well. The EBP is a computationally intensive method, whereas the MBDE is easy to implement. In case of model misspecification, the MBDE also appears to be more robust. The mean-squared error (MSE) estimation of MBDE is simple and straightforward, which is in contrast to the complicated MSE estimation for the EBP. 相似文献
3.
Mahmoud Torabi 《Revue canadienne de statistique》2019,47(3):426-437
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada 相似文献
4.
Tatjana von Rosen 《统计学通讯:理论与方法》2020,49(13):3286-3297
AbstractSmall area estimation techniques have got a lot of attention during the last decades due to their important applications in survey studies. Mixed linear models and reduced rank regression analysis are jointly used when considering small area estimation. Estimates of parameters are presented as well as prediction of random effects and unobserved area measurements. 相似文献
5.
K. C. Siju 《Journal of Statistical Computation and Simulation》2018,88(9):1717-1748
This paper focusses on computing the Bayesian reliability of components whose performance characteristics (degradation – fatigue and cracks) are observed during a specified period of time. Depending upon the nature of degradation data collected, we fit a monotone increasing or decreasing function for the data. Since the components are supposed to have different lifetimes, the rate of degradation is assumed to be a random variable. At a critical level of degradation, the time to failure distribution is obtained. The exponential and power degradation models are studied and exponential density function is assumed for the random variable representing the rate of degradation. The maximum likelihood estimator and Bayesian estimator of the parameter of exponential density function, predictive distribution, hierarchical Bayes approach and robustness of the posterior mean are presented. The Gibbs sampling algorithm is used to obtain the Bayesian estimates of the parameter. Illustrations are provided for the train wheel degradation data. 相似文献
6.
Domingo Morales 《Journal of Statistical Computation and Simulation》2019,89(9):1592-1620
Data from past time periods and temporal correlation are rich sources of information for estimating small area parameters at the current period. This paper investigates the use of unit-level temporal linear mixed models for estimating linear parameters. Two models are considered, with domain and domain-time random effects. The first model assumes time independency and the second one AR(1)-type time correlation. They are fitted by a Fisher-scoring algorithm that calculates the residual maximum likelihood estimators of the model parameters. Based on the introduced models, empirical best linear unbiased predictors of small area linear parameters are studied, and analytic estimators for evaluating the performance of their mean squared errors are proposed. Three simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the estimators of the mean squared error. By using data of the Spanish surveys of income and living conditions of 2004–2008, an application to the estimation of 2008 average normalized net annual incomes in Spanish provinces by sex is given. 相似文献
7.
Gibbs sampling has had great success in the analysis of mixture models. In particular, the “latent variable” formulation of the mixture model greatly reduces computational complexity. However, one failing of this approach is the possible existence of almost-absorbing states, called trapping states, as it may require an enormous number of iterations to escape from these states. Here we examine an alternative approach to estimation in mixture models, one based on a Rao–Blackwellization argument applied to a latent-variable-based estimator. From this derivation we construct an alternative Monte Carlo sampling scheme that avoids trapping states. 相似文献
8.
Innocent Ngaruye Joseph Nzabanita Dietrich von Rosen Martin Singull 《统计学通讯:理论与方法》2017,46(21):10835-10850
In this article, small area estimation under a multivariate linear model for repeated measures data is considered. The proposed model aims to get a model which borrows strength both across small areas and over time. The model accounts for repeated surveys, grouped response units, and random effects variations. Estimation of model parameters is discussed within a likelihood based approach. Prediction of random effects, small area means across time points, and per group units are derived. A parametric bootstrap method is proposed for estimating the mean squared error of the predicted small area means. Results are supported by a simulation study. 相似文献
9.
Sample surveys are usually designed and analyzed to produce estimates for larger areas and/or populations. Nevertheless, sample sizes are often not large enough to give adequate precision for small area estimates of interest. To circumvent such difficulties, borrowing strength from related small areas via modeling becomes essential. In line with this, we propose a hierarchical multivariate Bayes prediction method for small area estimation based on the seemingly unrelated regressions (SUR) model. The performance of the proposed method was evaluated through simulation studies. 相似文献
10.
Suppose that the conditional density of a response variable given a vector of explanatory variables is parametrically modelled, and that data are collected by a two-phase sampling design. First, a simple random sample is drawn from the population. The stratum membership in a finite number of strata of the response and explanatory variables is recorded for each unit. Second, a subsample is drawn from the phase-one sample such that the selection probability is determined by the stratum membership. The response and explanatory variables are fully measured at this phase. We synthesize existing results on nonparametric likelihood estimation and present a streamlined approach for the computation and the large sample theory of profile likelihood in four different situations. The amount of information in terms of data and assumptions varies depending on whether the phase-one data are retained, the selection probabilities are known, and/or the stratum probabilities are known. We establish and illustrate numerically the order of efficiency among the maximum likelihood estimators, according to the amount of information utilized, in the four situations. 相似文献
11.
Over the last few years many studies have been carried out in Italy to identify reliable small area labour force indicators. Considering the rotated sample design of the Italian Labour Force Survey, the aim of this work is to derive a small area estimator which borrows strength from individual temporal correlation, as well as from related areas. Two small area estimators are derived as extensions of an estimation strategies proposed by Fuller (1990) for partial overlap samples. A simulation study is carried out to evaluate the gain in efficiency provided by our solutions. Results obtained for different levels of autocorrelation between repeated measurements on the same outcome and different population settings show that these estimators are always more reliable than the traditional composite one, and in some circumstances they are extremely advantageous.The present paper is financially supported by Murst-Cofin (2001) Lutilizzo di informazioni di tipo amministrativo nella stima per piccole aree e per sottoinsiemi della popolazione (National Coordinator Prof. Carlo Filippucci). 相似文献
12.
In this paper, a new small domain estimator for area-level data is proposed. The proposed estimator is driven by a real problem of estimating the mean price of habitation transaction at a regional level in a European country, using data collected from a longitudinal survey conducted by a national statistical office. At the desired level of inference, it is not possible to provide accurate direct estimates because the sample sizes in these domains are very small. An area-level model with a heterogeneous covariance structure of random effects assists the proposed combined estimator. This model is an extension of a model due to Fay and Herriot [5], but it integrates information across domains and over several periods of time. In addition, a modified method of estimation of variance components for time-series and cross-sectional area-level models is proposed by including the design weights. A Monte Carlo simulation, based on real data, is conducted to investigate the performance of the proposed estimators in comparison with other estimators frequently used in small area estimation problems. In particular, we compare the performance of these estimators with the estimator based on the Rao–Yu model [23]. The simulation study also accesses the performance of the modified variance component estimators in comparison with the traditional ANOVA method. Simulation results show that the estimators proposed perform better than the other estimators in terms of both precision and bias. 相似文献
13.
Small area estimation: the EBLUP estimator based on spatially correlated random area effects 总被引:1,自引:0,他引:1
This paper deals with small area indirect estimators under area level random effect models when only area level data are available and the random effects are correlated. The performance of the Spatial Empirical Best Linear Unbiased Predictor (SEBLUP) is explored with a Monte Carlo simulation study on lattice data and it is applied to the results of the sample survey on Life Conditions in Tuscany (Italy). The mean squared error (MSE) problem is discussed illustrating the MSE estimator in comparison with the MSE of the empirical sampling distribution of SEBLUP estimator. A clear tendency in our empirical findings is that the introduction of spatially correlated random area effects reduce both the variance and the bias of the EBLUP estimator. Despite some residual bias, the coverage rate of our confidence intervals comes close to a nominal 95%. 相似文献
14.
P. Damlen J. Wakefield & S. Walker 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1999,61(2):331-344
We demonstrate the use of auxiliary (or latent) variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate and hierarchical models by using a Gibbs sampler. Their strategic use can result in a Gibbs sampler having easily sampled full conditionals. We propose such a procedure to simplify or speed up the Markov chain Monte Carlo algorithm. The strength of this approach lies in its generality and its ease of implementation. The aim of the paper, therefore, is to provide an alternative sampling algorithm to rejection-based methods and other sampling approaches such as the Metropolis–Hastings algorithm. 相似文献
15.
We show that the maximum likelihood estimators (MLEs) of the fixed effects and within‐cluster correlation are consistent in a heteroscedastic nested‐error regression (HNER) model with completely unknown within‐cluster variances under mild conditions. The result implies that the empirical best linear unbiased prediction (EBLUP) method for small area estimation is valid in such a case. We also show that ignoring the heteroscedasticity can lead to inconsistent estimation of the within‐cluster correlation and inferior predictive performance. A jackknife measure of uncertainty for the EBLUP is developed under the HNER model. Simulation studies are carried out to investigate the finite‐sample performance of the EBLUP and MLE under the HNER model, with comparisons to those under the nested‐error regression model in various situations, as well as that of the jackknife measure of uncertainty. The well‐known Iowa crops data is used for illustration. The Canadian Journal of Statistics 40: 588–603; 2012 © 2012 Statistical Society of Canada 相似文献
16.
小域估计是抽样调查的热点问题之一,其主流发展方向是基于模型的小域估计方法。但是这种方法依赖于模型的假定,若假定的模型错误,则估计效果很差。因此,利用对数变换和抽样设计权数得到小域的目标变量的稳健估计量,并通过模拟案例说明基于对数变换的方法是一种稳健有效的小域估计方法。 相似文献
17.
Hukum Chandra 《Journal of applied statistics》2013,40(4):823-842
This paper describes an application of small area estimation (SAE) techniques under area-level spatial random effect models when only area (or district or aggregated) level data are available. In particular, the SAE approach is applied to produce district-level model-based estimates of crop yield for paddy in the state of Uttar Pradesh in India using the data on crop-cutting experiments supervised under the Improvement of Crop Statistics scheme and the secondary data from the Population Census. The diagnostic measures are illustrated to examine the model assumptions as well as reliability and validity of the generated model-based small area estimates. The results show a considerable gain in precision in model-based estimates produced applying SAE. Furthermore, the model-based estimates obtained by exploiting spatial information are more efficient than the one obtained by ignoring this information. However, both of these model-based estimates are more efficient than the direct survey estimate. In many districts, there is no survey data and therefore it is not possible to produce direct survey estimates for these districts. The model-based estimates generated using SAE are still reliable for such districts. These estimates produced by using SAE will provide invaluable information to policy-analysts and decision-makers. 相似文献
18.
19.
In this paper, a penalized weighted least squares approach is proposed for small area estimation under the unit level model. The new method not only unifies the traditional empirical best linear unbiased prediction that does not take sampling design into account and the pseudo‐empirical best linear unbiased prediction that incorporates sampling weights but also has the desirable robustness property to model misspecification compared with existing methods. The empirical small area estimator is given, and the corresponding second‐order approximation to mean squared error estimator is derived. Numerical comparisons based on synthetic and real data sets show superior performance of the proposed method to currently available estimators in the literature. 相似文献
20.
Ryan Janicki 《统计学通讯:理论与方法》2020,49(9):2264-2284
AbstractLinear mixed effects models have been popular in small area estimation problems for modeling survey data when the sample size in one or more areas is too small for reliable inference. However, when the data are restricted to a bounded interval, the linear model may be inappropriate, particularly if the data are near the boundary. Nonlinear sampling models are becoming increasingly popular for small area estimation problems when the normal model is inadequate. This paper studies the use of a beta distribution as an alternative to the normal distribution as a sampling model for survey estimates of proportions which take values in (0, 1). Inference for small area proportions based on the posterior distribution of a beta regression model ensures that point estimates and credible intervals take values in (0, 1). Properties of a hierarchical Bayesian small area model with a beta sampling distribution and logistic link function are presented and compared to those of the linear mixed effect model. Propriety of the posterior distribution using certain noninformative priors is shown, and behavior of the posterior mean as a function of the sampling variance and the model variance is described. An example using 2010 Small Area Income and Poverty Estimates (SAIPE) data is given, and a numerical example studying small sample properties of the model is presented. 相似文献