首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors give the exact coefficient of 1/N in a saddlepoint approximation to the Wilcoxon‐Mann‐Whitney null‐distribution. This saddlepoint approximation is obtained from an Edgeworth approximation to the exponentially tilted distribution. Moreover, the rate of convergence of the relative error is uniformly of order O (1/N) in a large deviation interval as defined in Feller (1971). The proposed method for computing the coefficient of 1/N can be used to obtain the exact coefficients of 1/Ni, for any i. The exact formulas for the cumulant generating function and the cumulants, needed for these results, are those of van Dantzig (1947‐1950).  相似文献   

2.
Laplace approximations for the Pitman estimators of location or scale parameters, including terms O(n?1), are obtained. The resulting expressions involve the maximum-likelihood estimate and the derivatives of the log-likelihood function up to order 3. The results can be used to refine the approximations for the optimal compromise estimators for location parameters considered by Easton (1991). Some applications and Monte Carlo simulations are discussed.  相似文献   

3.
Partial Saddlepoint Approximations for Transformed Means   总被引:2,自引:0,他引:2  
The full saddlepoint approximation for real valued smooth functions of means requires the existence of the joint cumulant generating function for the entire vector of random variables which are being transformed. We propose a mixed saddlepoint-Edgeworth approximation requiring the existence of a cumulant generating function for only part of the random vector considered, while retaining partially the relative nature of the errors. Tail probability approximations are obtained under conditions which enable the approximations to be used in resampling situations and hence to obtain a result on the relative error of coverage in the case of the bootstrap approximation to the confidence interval for the Studentized mean.  相似文献   

4.
In this article we provide saddlepoint approximations for some important models of circular data. The particularity of these saddlepoint approximations is that they do not require solving the saddlepoint equation iteratively, so their evaluation is immediate. We first give very accurate approximations to P-values, critical values and power functions for some optimal tests regarding the concentration parameter under wrapped symmetric α-stable and circular normal models. Then, we consider an approximation to the distribution of a projection of the two-dimensional Pearson random walk with exponential step sizes.  相似文献   

5.
The authors show how saddlepoint techniques lead to highly accurate approximations for Bayesian predictive densities and cumulative distribution functions in stochastic model settings where the prior is tractable, but not necessarily the likelihood or the predictand distribution. They consider more specifically models involving predictions associated with waiting times for semi‐Markov processes whose distributions are indexed by an unknown parameter θ. Bayesian prediction for such processes when they are not stationary is also addressed and the inverse‐Gaussian based saddlepoint approximation of Wood, Booth & Butler (1993) is shown to accurately deal with the nonstationarity whereas the normal‐based Lugannani & Rice (1980) approximation cannot, Their methods are illustrated by predicting various waiting times associated with M/M/q and M/G/1 queues. They also discuss modifications to the matrix renewal theory needed for computing the moment generating functions that are used in the saddlepoint methods.  相似文献   

6.
It is well known that saddlepoint expansions lead to accurate approximations to the cumulative distributions and densities of a sample mean and other simple linear statistics. The use of such expansions is explored in a broader situation. The saddlepoint formula for the tail probability of a certain type of nonlinear statistic is derived. The relative error of O(n–1), as in the linear case, is retained. A simple example is considered, to illustrate the great accuracy of the approximation.  相似文献   

7.
The saddlepoint approximation formulas provide versatile tools for analytic approximation of the tail expectation of a random variable by approximating the complex Laplace integral of the tail expectation expressed in terms of the cumulant generating function of the random variable. We generalize the saddlepoint approximation formulas for calculating tail expectations from the usual Gaussian base distribution to an arbitrary base distribution. Specific discussion is presented on the criteria of choosing the base distribution that fits better the underlying distribution. Numerical performance and comparison of accuracy are made among different saddlepoint approximation formulas. Improved accuracy of the saddlepoint approximations to tail expectations is revealed when proper base distributions are chosen. We also demonstrate enhanced accuracy of the generalized saddlepoint approximation formulas under non-Gaussian base distributions in pricing European options on continuous integrated variance under the Heston stochastic volatility model.  相似文献   

8.
Importance sampling and control variates have been used as variance reduction techniques for estimating bootstrap tail quantiles and moments, respectively. We adapt each method to apply to both quantiles and moments, and combine the methods to obtain variance reductions by factors from 4 to 30 in simulation examples.We use two innovations in control variates—interpreting control variates as a re-weighting method, and the implementation of control variates using the saddlepoint; the combination requires only the linear saddlepoint but applies to general statistics, and produces estimates with accuracy of order n -1/2 B -1, where n is the sample size and B is the bootstrap sample size.We discuss two modifications to classical importance sampling—a weighted average estimate and a mixture design distribution. These modifications make importance sampling robust and allow moments to be estimated from the same bootstrap simulation used to estimate quantiles.  相似文献   

9.
The generalized gamma distribution is a flexible and attractive distribution because it incorporates several well-known distributions, i.e., gamma, Weibull, Rayleigh, and Maxwell. This article derives saddlepoint density and distribution functions for the ratio of two linear functions of generalized gamma variables and the product of n independent generalized gamma variables. Simulation studies are used to evaluate the accuracy of the saddlepoint approximations. The saddlepoint approximations are fast, easy, and very accurate.  相似文献   

10.
In this article, we consider the product-limit quantile estimator of an unknown quantile function under a censored dependent model. This is a parallel problem to the estimation of the unknown distribution function by the product-limit estimator under the same model. Simultaneous strong Gaussian approximations of the product-limit process and product-limit quantile process are constructed with rate O[(log n)] for some λ > 0. The strong Gaussian approximation of the product-limit process is then applied to derive the laws of the iterated logarithm for product-limit process.  相似文献   

11.
Two methods for approximating the distribution of a noncentral random variable by a central distribution in the same family are presented. The first consists of relating a stochastic expansion of a random variable to a corresponding asymptotic expansion for its distribution function. The second approximates the cumulant generating function and is used to provide central χ2 and gamma approximations to the noncentral χ2 and gamma distributions.  相似文献   

12.
This article proposes some regularity conditions. On the basis of the proposed regularity conditions, we show the strong consistency of the maximum likelihood estimator (MLE) in exponential family nonlinear models (EFNM) and give its convergence rate. In an important case, we obtain the convergence rate O(n ?1/2(log log n)1/2)—the rate as that in the Law of the Iterated Logarithm (LIL) for iid partial sums and thus cannot be improved anymore.  相似文献   

13.
We study the problem of approximating a stochastic process Y = {Y(t: tT} with known and continuous covariance function R on the basis of finitely many observations Y(t 1,), …, Y(t n ). Dependent on the knowledge about the mean function, we use different approximations ? and measure their performance by the corresponding maximum mean squared error sub t∈T E(Y(t) ? ?(t))2. For a compact T ? ? p we prove sufficient conditions for the existence of optimal designs. For the class of covariance functions on T 2 = [0, 1]2 which satisfy generalized Sacks/Ylvisaker regularity conditions of order zero or are of product type, we construct sequences of designs for which the proposed approximations perform asymptotically optimal.  相似文献   

14.
A great deal of inference in statistics is based on making the approximation that a statistic is normally distributed. The error in doing so is generally O(n?1/2), where n is the sample size and can be considered when the distribution of the statistic is heavily biased or skewed. This note shows how one may reduce the error to O(n?(j+1)/2), where j is a given integer. The case considered is when the statistic is the mean of the sample values of a continuous distribution with a scale or location change after the sample has undergone an initial transformation, which may depend on an unknown parameter. The transformation corresponding to Fisher's score function yields an asymptotically efficient procedure.  相似文献   

15.
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n ?3/2), n being the sample size. The corrections represent an improvement over the corresponding original Rao's score statistics, which are chi-squared distributed up to errors of order O(n ?1). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.  相似文献   

16.
In this paper, we consider an estimation for the unknown parameters of a conditional Gaussian MA(1) model. In the majority of cases, a maximum-likelihood estimator is chosen because the estimator is consistent. However, for small sample sizes the error is large, because the estimator has a bias of O(n? 1). Therefore, we provide a bias of O(n? 1) for the maximum-likelihood estimator for the conditional Gaussian MA(1) model. Moreover, we propose new estimators for the unknown parameters of the conditional Gaussian MA(1) model based on the bias of O(n? 1). We investigate the properties of the bias, as well as the asymptotical variance of the maximum-likelihood estimators for the unknown parameters, by performing some simulations. Finally, we demonstrate the validity of the new estimators through this simulation study.  相似文献   

17.
Suppose [^(q)]{\widehat{\theta}} is an estimator of θ in \mathbbR{\mathbb{R}} that satisfies the central limit theorem. In general, inferences on θ are based on the central limit approximation. These have error O(n −1/2), where n is the sample size. Many unsuccessful attempts have been made at finding transformations which reduce this error to O(n −1). The variance stabilizing transformation fails to achieve this. We give alternative transformations that have bias O(n −2), and skewness O(n −3). Examples include the binomial, Poisson, chi-square and hypergeometric distributions.  相似文献   

18.
A determinantal approximation is obtained for the permanent of a doubly stochastic matrix. For moderate-deviation matrix sequences, the asymptotic relative error is of order O(n?1).  相似文献   

19.
EMPIRICAL BAYES ESTIMATION WITH NON-IDENTICAL COMPONENTS. CONTINUOUS CASE.   总被引:3,自引:0,他引:3  
In this paper a variant of the standard empirical Bayes estimation problem is considered where the component problems in the sequence are not identical in that the conditional distribution of the observations may vary with the component problems. Let {(Θn, Xn)} be a sequence of independent random vectors where Θn? G and, given Θnn, Xn -PΘ,m(n) with {m(n)} a sequence of positive integers where m(n)≤m? < ∞ for all n. With PΘ,m in a continuous exponential family of distributions, asymptotically optimal empirical Bayes procedures are exhibited which depend on uniform approximations of certain functions on compact sets by polynomials in eΘ. Such approximations have been explicitly calculated in the case of normal and gamma families. In the case of normal families, asymptotically optimal linear empirical Bayes estimators in the class of all linear estimators are derived and shown to have rate O(n-1/2).  相似文献   

20.
《随机性模型》2013,29(1):31-42
Abstract

We give a sufficient condition for the exponential decay of the tail of a discrete probability distribution π = (π n ) n≥0 in the sense that lim n→∞(1/n) log∑ i>n π i  = ?θ with 0 < θ < ∞. We focus on analytic properties of the probability generating function of a discrete probability distribution, especially, the radius of convergence and the number of poles on the circle of convergence. Furthermore, we give an example of an M/G/1 type Markov chain such that the tail of its stationary distribution does not decay exponentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号