首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For first‐time‐in‐human studies with small molecules alternating cross‐over designs are often employed and at study end are analyzed using linear models. We discuss the impact of including a period effect in the model on the precision with which dose level contrasts can be estimated and quantify the bias of least squares estimators if a period effect is inherent in the data that is not accounted for in the model. We also propose two alternative designs that allow a more precise estimation of dose level contrasts compared with the standard design when period effects are included in the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The authors construct locally optimal designs for the proportional odds model for ordinal data. While they investigate the standard D‐optimal design, they also investigate optimality criteria for the simultaneous estimation of multiple quantiles, namely DA ‐optimality and the omnibus criterion. The design of experiments for the simultaneous estimation of multiple quantiles is important in both toxic and effective dose studies in medicine. As with c‐optimality in the binary response problem, the authors find that there are distinct phase changes when exploring extreme quantiles that require additional design points. The authors also investigate relative efficiencies of the criteria.  相似文献   

3.
In a two‐level factorial experiment, the authors consider designs with partial duplication which permit estimation of the constant term, all main effects and some specified two‐factor interactions, assuming that the other effects are negligible. They construct parallel‐flats designs with two identical parallel flats that meet prior specifications; they also consider classes of 3‐flat and 4‐flat designs. They show that the designs obtained can have a very simple covariance structure and high D‐efficiency. They give an algorithm from which they generate a series of practical designs with run sizes 12, 16, 24, and 32.  相似文献   

4.
The T‐optimality criterion is used in optimal design to derive designs for model selection. To set up the method, it is required that one of the models is considered to be true. We term this local T‐optimality. In this work, we propose a generalisation of T‐optimality (termed robust T‐optimality) that relaxes the requirement that one of the candidate models is set as true. We then show an application to a nonlinear mixed effects model with two candidate non‐nested models and combine robust T‐optimality with robust D‐optimality. Optimal design under local T‐optimality was found to provide adequate power when the a priori assumed true model was the true model but poor power if the a priori assumed true model was not the true model. The robust T‐optimality method provided adequate power irrespective of which model was true. The robust T‐optimality method appears to have useful properties for nonlinear models, where both the parameter values and model structure are required to be known a priori, and the most likely model that would be applied to any new experiment is not known with certainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Higher‐order crossover designs have drawn considerable attention in clinical trials, because of their ability to test direct treatment effects in the presence of carry‐over effects. The important question, when applying higher‐order crossover designs in practice, is how to choose a design with both statistical and cost efficiencies from various alternatives. In this paper, we propose a general cost function and compare five statistically optimal or near‐optimal designs with this cost function for a two‐treatment study under different carry‐over models. Based on our study, to achieve both statistical and cost efficiencies, a four‐period, four‐sequence crossover design is generally recommended under the simple carry‐over or no carry‐over models, and a three‐period, two‐sequence crossover design is generally recommended under the steady‐state carry‐over models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Statistical analyses of crossover clinical trials have mainly focused on assessing the treatment effect, carryover effect, and period effect. When a treatment‐by‐period interaction is plausible, it is important to test such interaction first before making inferences on differences among individual treatments. Considerably less attention has been paid to the treatment‐by‐period interaction, which has historically been aliased with the carryover effect in two‐period or three‐period designs. In this article, from the data of a newly developed four‐period crossover design, we propose a statistical method to compare the effects of two active drugs with respect to two response variables. We study estimation and hypothesis testing considering the treatment‐by‐period interaction. Constrained least squares is used to estimate the treatment effect, period effect, and treatment‐by‐period interaction. For hypothesis testing, we extend a general multivariate method for analyzing the crossover design with multiple responses. Results from simulation studies have shown that this method performs very well. We also illustrate how to apply our method to the real data problem.  相似文献   

7.
The author considers time‐to‐event data from case‐cohort designs. As existing methods are either inefficient or based on restrictive assumptions concerning the censoring mechanism, he proposes a semi‐parametrically efficient estimator under the usual assumptions for Cox regression models. The estimator in question is obtained by a one‐step Newton‐Raphson approximation that solves the efficient score equations with initial value obtained from an existing method. The author proves that the estimator is consistent, asymptotically efficient and normally distributed in the limit. He also resorts to simulations to show that the proposed estimator performs well in finite samples and that it considerably improves the efficiency of existing pseudo‐likelihood estimators when a correlate of the missing covariate is available. Although he focuses on the situation where covariates are discrete, the author also explores how the method can be applied to models with continuous covariates.  相似文献   

8.
We consider the problem of parameter estimation for inhomogeneous space‐time shot‐noise Cox point processes. We explore the possibility of using a stepwise estimation method and dimensionality‐reducing techniques to estimate different parts of the model separately. We discuss the estimation method using projection processes and propose a refined method that avoids projection to the temporal domain. This remedies the main flaw of the method using projection processes – possible overlapping in the projection process of clusters, which are clearly separated in the original space‐time process. This issue is more prominent in the temporal projection process where the amount of information lost by projection is higher than in the spatial projection process. For the refined method, we derive consistency and asymptotic normality results under the increasing domain asymptotics and appropriate moment and mixing assumptions. We also present a simulation study that suggests that cluster overlapping is successfully overcome by the refined method.  相似文献   

9.
In many experiments, not all explanatory variables can be controlled. When the units arise sequentially, different approaches may be used. The authors study a natural sequential procedure for “marginally restricted” D‐optimal designs. They assume that one set of explanatory variables (x1) is observed sequentially, and that the experimenter responds by choosing an appropriate value of the explanatory variable x2. In order to solve the sequential problem a priori, the authors consider the problem of constructing optimal designs with a prior marginal distribution for x1. This eliminates the influence of units already observed on the next unit to be designed. They give explicit designs for various cases in which the mean response follows a linear regression model; they also consider a case study with a nonlinear logistic response. They find that the optimal strategy often consists of randomizing the assignment of the values of x2.  相似文献   

10.
Some degree of error is inevitable in multi‐agent bioassays regardless of design or measurement technology. Estimation error can be reduced post facto by exploiting the matrix partial ordering of the bioassay survival estimates. The standard method for this is order‐restricted regression (ORR). If the joint action of the bioassay agents admits a tolerance‐based interpretation, additional structure beyond matrix partial ordering is available, leading to a new method of error reduction. This tolerance‐based error reduction (TBER) procedure almost always outperforms ORR. Like ORR, TBER applies to complete factorial bioassay designs and, using weighting, to incomplete designs.  相似文献   

11.
A bioequivalence test is to compare bioavailability parameters, such as the maximum observed concentration (Cmax) or the area under the concentration‐time curve, for a test drug and a reference drug. During the planning of a bioequivalence test, it requires an assumption about the variance of Cmax or area under the concentration‐time curve for the estimation of sample size. Since the variance is unknown, current 2‐stage designs use variance estimated from stage 1 data to determine the sample size for stage 2. However, the estimation of variance with the stage 1 data is unstable and may result in too large or too small sample size for stage 2. This problem is magnified in bioequivalence tests with a serial sampling schedule, by which only one sample is collected from each individual and thus the correct assumption of variance becomes even more difficult. To solve this problem, we propose 3‐stage designs. Our designs increase sample sizes over stages gradually, so that extremely large sample sizes will not happen. With one more stage of data, the power is increased. Moreover, the variance estimated using data from both stages 1 and 2 is more stable than that using data from stage 1 only in a 2‐stage design. These features of the proposed designs are demonstrated by simulations. Testing significance levels are adjusted to control the overall type I errors at the same level for all the multistage designs.  相似文献   

12.
There has recently been increasing demand for better designs to conduct first‐into‐man dose‐escalation studies more efficiently, more accurately and more quickly. The authors look into the Bayesian decision‐theoretic approach and use simulation as a tool to investigate the impact of compromises with conventional practice that might make the procedures more acceptable for implementation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
CVX‐based numerical algorithms are widely and freely available for solving convex optimization problems but their applications to solve optimal design problems are limited. Using the CVX programs in MATLAB, we demonstrate their utility and flexibility over traditional algorithms in statistics for finding different types of optimal approximate designs under a convex criterion for nonlinear models. They are generally fast and easy to implement for any model and any convex optimality criterion. We derive theoretical properties of the algorithms and use them to generate new A‐, c‐, D‐ and E‐optimal designs for various nonlinear models, including multi‐stage and multi‐objective optimal designs. We report properties of the optimal designs and provide sample CVX program codes for some of our examples that users can amend to find tailored optimal designs for their problems. The Canadian Journal of Statistics 47: 374–391; 2019 © 2019 Statistical Society of Canada  相似文献   

14.
The author identifies static optimal designs for polynomial regression models with or without intercept. His optimality criterion is an average between the D‐optimality criterion for the estimation of low‐degree terms and the D8‐optimality criterion for testing the significance of higher degree terms. His work relies on classical results concerning canonical moments and the theory of continued fractions.  相似文献   

15.
We study the maxiset performance of a large collection of block thresholding wavelet estimators, namely the horizontal block thresholding family. We provide sufficient conditions on the choices of rates and threshold values to ensure that the involved adaptive estimators obtain large maxisets. Moreover, we prove that any estimator of such a family reconstructs the Besov balls with a near‐minimax optimal rate that can be faster than the one of any separable thresholding estimator. Then, we identify, in particular cases, the best estimator of such a family, that is, the one associated with the largest maxiset. As a particularity of this paper, we propose a refined approach that models method‐dependent threshold values. By a series of simulation studies, we confirm the good performance of the best estimator by comparing it with the other members of its family.  相似文献   

16.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

17.
The author shows how to find M‐estimators of location whose generating function is monotone and which are optimal or close to optimal. It is easy to identify a consistent sequence of estimators in this class. In addition, it contains simple and efficient approximations in cases where the likelihood function is difficult to obtain. In some neighbourhoods of the normal distribution, the loss of efficiency due to the approximation is quite small. Optimal monotone M‐estimators can also be determined in cases when the underlying distribution is known only up to a certain neighbourhood. The author considers the e‐contamination model and an extension thereof that allows the distributions to be arbitrary outside compact intervals. His results also have implications for distributions with monotone score functions. The author illustrates his methodology using Student and stable distributions.  相似文献   

18.
In outcome‐dependent sampling, the continuous or binary outcome variable in a regression model is available in advance to guide selection of a sample on which explanatory variables are then measured. Selection probabilities may either be a smooth function of the outcome variable or be based on a stratification of the outcome. In many cases, only data from the final sample is accessible to the analyst. A maximum likelihood approach for this data configuration is developed here for the first time. The likelihood for fully general outcome‐dependent designs is stated, then the special case of Poisson sampling is examined in more detail. The maximum likelihood estimator differs from the well‐known maximum sample likelihood estimator, and an information bound result shows that the former is asymptotically more efficient. A simulation study suggests that the efficiency difference is generally small. Maximum sample likelihood estimation is therefore recommended in practice when only sample data is available. Some new smooth sample designs show considerable promise.  相似文献   

19.
The model that describes the retention in lungs of radioisotope particles is studied in this paper, considering the situation of an accident in facilities that handle radioactive materials. Optimal times to make the bioassays are computed for D‐ and c‐optimality, and efficiencies for the computed designs are provided and compared. Moreover, the test power is checked by means of simulations and replications. After that the inverse of the Fisher information matrix is compared to an estimation of the covariance matrix of the parameters. Finally, a study taking into consideration the randomness of the designs space is performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we review the adaptive design methodology of Li et al. (Biostatistics 3 :277–287) for two‐stage trials with mid‐trial sample size adjustment. We argue that it is closer in principle to a group sequential design, in spite of its obvious adaptive element. Several extensions are proposed that aim to make it even more attractive and transparent alternative to a standard (fixed sample size) trial for funding bodies to consider. These enable a cap to be put on the maximum sample size and for the trial data to be analysed using standard methods at its conclusion. The regulatory view of trials incorporating unblinded sample size re‐estimation is also discussed. © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号