首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Receiver operating characteristic(ROC)curves are useful for studying the performance of diagnostic tests. ROC curves occur in many fields of applications including psychophysics, quality control and medical diagnostics. In practical situations, often the responses to a diagnostic test are classified into a number of ordered categories. Such data are referred to as ratings data. It is typically assumed that the underlying model is based on a continuous probability distribution. The ROC curve is then constructed from such data using this probability model. Properties of the ROC curve are inherited from the model. Therefore, understanding the role of different probability distributions in ROC modeling is an interesting and important area of research. In this paper the Lomax distribution is considered as a model for ratings data and the corresponding ROC curve is derived. The maximum likelihood estimation procedure for the related parameters is discussed. This procedure is then illustrated in the analysis of a neurological data example.  相似文献   

2.
It is well known that, when sample observations are independent, the area under the receiver operating characteristic (ROC) curve corresponds to the Wilcoxon statistics if the area is calculated by the trapezoidal rule. Correlated ROC curves arise often in medical research and have been studied by various parametric methods. On the basis of the Mann–Whitney U-statistics for clustered data proposed by Rosner and Grove, we construct an average ROC curve and derive nonparametric methods to estimate the area under the average curve for correlated ROC curves obtained from multiple readers. For the more complicated case where, in addition to multiple readers examining results on the same set of individuals, two or more diagnostic tests are involved, we derive analytic methods to compare the areas under correlated average ROC curves for these diagnostic tests. We demonstrate our methods in an example and compare our results with those obtained by other methods. The nonparametric average ROC curve and the analytic methods that we propose are easy to explain and simple to implement.  相似文献   

3.
Receiver operating characteristic (ROC) curve, plotting true positive rates against false positive rates as threshold varies, is an important tool for evaluating biomarkers in diagnostic medicine studies. By definition, ROC curve is monotone increasing from 0 to 1 and is invariant to any monotone transformation of test results. And it is often a curve with certain level of smoothness when test results from the diseased and non-diseased subjects follow continuous distributions. Most existing ROC curve estimation methods do not guarantee all of these properties. One of the exceptions is Du and Tang (2009) which applies certain monotone spline regression procedure to empirical ROC estimates. However, their method does not consider the inherent correlations between empirical ROC estimates. This makes the derivation of the asymptotic properties very difficult. In this paper we propose a penalized weighted least square estimation method, which incorporates the covariance between empirical ROC estimates as a weight matrix. The resulting estimator satisfies all the aforementioned properties, and we show that it is also consistent. Then a resampling approach is used to extend our method for comparisons of two or more diagnostic tests. Our simulations show a significantly improved performance over the existing method, especially for steep ROC curves. We then apply the proposed method to a cancer diagnostic study that compares several newly developed diagnostic biomarkers to a traditional one.  相似文献   

4.
5.
The receiver operating characteristic (ROC) curve gives a graphical representation of sensitivity and specificity of a prediction model when varying the decision treshold on a diagnostic criterion. A classical test for comparing the overall accuracies for two models -1 and 2- is based on the difference between ROC curves areas - related to its standard error. This test is designed for the situation where ROC curve 1 caps ROC curve 2. Often both curves cross :in this paper, a new test, based on the integrated difference between the curves, is proposed to deal with this situation. In a simulation experiment, the new test was less powerful than the old test for detecting an overall superiority, but much more powerfull against the crossing alternative.  相似文献   

6.
Continuous diagnostic tests are often used to discriminate between diseased and healthy populations. The receiver operating characteristic (ROC) curve is a widely used tool that provides a graphical visualisation of the effectiveness of such tests. The potential performance of the tests in terms of distinguishing diseased from healthy people may be strongly influenced by covariates, and a variety of regression methods for adjusting ROC curves has been developed. Until now, these methodologies have assumed that covariate effects have parametric forms, but in this paper we extend the induced methodology by allowing for arbitrary non-parametric effects of a continuous covariate. To this end, local polynomial kernel smoothers are used in the estimation procedure. Our method allows for covariate effect not only on the mean, but also on the variance of the diagnostic test. We also present a bootstrap-based method for testing for a significant covariate effect on the ROC curve. To illustrate the method, endocrine data were analysed with the aim of assessing the performance of anthropometry for predicting clusters of cardiovascular risk factors in an adult population in Galicia (NW Spain), duly adjusted for age. The proposed methodology has proved useful for providing age-specific thresholds for anthropometric measures in the Galician community.  相似文献   

7.
The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) of the ROC curve are widely used in discovery to compare the performance of diagnostic and prognostic assays. The ROC curve has the advantage that it is independent of disease prevalence. However, in this note, we remind scientists and clinicians that the performance of an assay upon translation to the clinic is critically dependent upon that very same prevalence. Without an understanding of prevalence in the test population, even robust bioassays with excellent ROC characteristics may perform poorly in the clinic. While the exact prevalence in the target population is not always known, simple plots of candidate assay performance as a function of prevalence rate give a better understanding of the likely real‐world performance and a greater understanding of the likely impact of variation in that prevalence on translation to the clinic.  相似文献   

8.
In this paper, an alternative method for the comparison of two diagnostic systems based on receiver operating characteristic (ROC) curves is presented. ROC curve analysis is often used as a statistical tool for the evaluation of diagnostic systems. However, in general, the comparison of ROC curves is not straightforward, in particular, when they cross each other. A similar difficulty is also observed in the multi-objective optimization field where sets of solutions defining fronts must be compared with a multi-dimensional space. Thus, the proposed methodology is based on a procedure used to compare the performance of distinct multi-objective optimization algorithms. In general, methods based on the area under the ROC curves are not sensitive to the existence of crossing points between the curves. The new approach can deal with this situation and also allows the comparison of partial portions of ROC curves according to particular values of sensitivity and specificity of practical interest. Simulations results are presented. For illustration purposes, considering real data from newborns with very low birthweight, the new method was applied in order to discriminate the better index for evaluating the risk of death.  相似文献   

9.
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. Good methods for determining diagnostic accuracy provide useful guidance on selection of patient treatment, and the ability to compare different diagnostic tests has a direct impact on quality of care. In this paper Nonparametric Predictive Inference (NPI) methods for accuracy of diagnostic tests with continuous test results are presented and discussed. For such tests, Receiver Operating Characteristic (ROC) curves have become popular tools for describing the performance of diagnostic tests. We present the NPI approach to ROC curves, and some important summaries of these curves. As NPI does not aim at inference for an entire population but instead explicitly considers a future observation, this provides an attractive alternative to standard methods. We show how NPI can be used to compare two continuous diagnostic tests.  相似文献   

10.
The receiver operating characteristic (ROC) curve is a graphical representation of the relationship between false positive and true positive rates. It is a widely used statistical tool for describing the accuracy of a diagnostic test. In this paper we propose a new nonparametric ROC curve estimator based on the smoothed empirical distribution functions. We prove its strong consistency and perform a simulation study to compare it with some other popular nonparametric estimators of the ROC curve. We also apply the proposed method to a real data set.  相似文献   

11.
The receiver operating characteristic (ROC) curve can be used to evaluate the properties of a diagnostic test from the distribution of a variable on the healthy and diseased populations. The minimum averaged mean squared error (MAMSE) weights were developed to handle data from different sources by adjusting the relative contribution of each data source. The authors use the MAMSE weights to infer the ROC curve of a diagnostic test based on raw data from multiple studies. The proposed estimates are consistent and Monte Carlo simulations show favourable finite sample performance. The method is illustrated in a case study where progesterone level is used to detect ectopic pregnancies and abortions from other natural causes. The Canadian Journal of Statistics 46: 298–315; 2018 © 2018 Statistical Society of Canada  相似文献   

12.
ROC curve is a graphical representation of the relationship between sensitivity and specificity of a diagnostic test. It is a popular tool for evaluating and comparing different diagnostic tests in medical sciences. In the literature,the ROC curve is often estimated empirically based on an empirical distribution function estimator and an empirical quantile function estimator. In this paper an alternative nonparametric procedure to estimate the ROC Curve is suggested which is based on local smoothing techniques. Several numerical examples are presented to evaluate the performance of this procedure.  相似文献   

13.
Non-inferiority tests are often measured for the diagnostic accuracy in medical research. The area under the receiver operating characteristic (ROC) curve is a familiar diagnostic measure for the overall diagnostic accuracy. Nevertheless, since it may not differentiate the diverse shapes of the ROC curves with different diagnostic significance, the partial area under the ROC (PAUROC) curve, another summary measure emerges for such diagnostic processes that require the false-positive rate to be in the clinically interested range. Traditionally, to estimate the PAUROC, the golden standard (GS) test on the true disease status is required. Nevertheless, the GS test may sometimes be infeasible. Besides, in a lot of research fields such as the epidemiology field, the true disease status of the patients may not be known or available. Under the normality assumption on diagnostic test results, based on the expectation-maximization algorithm in combination with the bootstrap method, we propose the heuristic method to construct a non-inferiority test for the difference in the paired PAUROCs without the GS test. Through the simulation study, although the proposed method might provide a liberal test, as a whole, the empirical size of the proposed method sufficiently controls the size at the significance level, and the empirical power of the proposed method in the absence of the GS is as good as that of the non-inferiority in the presence of the GS. The proposed method is illustrated with the published data.  相似文献   

14.
In a continuous-scale diagnostic test, the receiver operating characteristic (ROC) curve is useful to evaluate the range of the sensitivity at the cut-off point that yields a desired specificity. Many current studies on inference of the ROC curve focus on the complete data case. In this paper, an imputation-based profile empirical likelihood ratio for the sensitivity, which is free of bandwidth selection, is defined and shown to follow an asymptotically scaled Chi-square distribution. Two new confidence intervals are proposed for the sensitivity with missing data. Simulation studies are conducted to evaluate the finite sample performance of the proposed intervals in terms of coverage probability. A real example is used to illustrate the new methods.  相似文献   

15.
In this paper we propose a flexible method for estimating a receiver operating characteristic (ROC) curve that is based on a continuous-scale test. The approach is easily understood and efficiently computed, and robust to the smooth parameter selection, which needs intensive computation when using local polynomial and smoothing spline techniques. The results from our simulation experiment indicate that the moderate-sample numerical performance of our estimator is better than the empirical ROC curve estimator and comparable to the local linear estimator. The availability of easy implementation is also illustrated by our simulation. We apply the proposed method to two real data sets.  相似文献   

16.
The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performance of two or more laboratory or diagnostic tests. In this paper, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric and the other one is non-parametric and both have missing data. After imputing missing values, we derive the semi-empirical likelihood ratio statistic and the corresponding likelihood equations. It is shown that the log-semi-empirical likelihood ratio statistic is asymptotically scaled chi-squared. The estimating equations are solved simultaneously to obtain the estimated lower and upper bounds of semi-empirical likelihood confidence intervals. We conduct extensive simulation studies to evaluate the finite sample performance of the proposed empirical likelihood confidence intervals with various sample sizes and different missing probabilities.  相似文献   

17.
The problem of estimating standard errors for diagnostic accuracy measures might be challenging for many complicated models. We can address such a problem by using the Bootstrap methods to blunt its technical edge with resampled empirical distributions. We consider two cases where bootstrap methods can successfully improve our knowledge of the sampling variability of the diagnostic accuracy estimators. The first application is to make inference for the area under the ROC curve resulted from a functional logistic regression model which is a sophisticated modelling device to describe the relationship between a dichotomous response and multiple covariates. We consider using this regression method to model the predictive effects of multiple independent variables on the occurrence of a disease. The accuracy measures, such as the area under the ROC curve (AUC) are developed from the functional regression. Asymptotical results for the empirical estimators are provided to facilitate inferences. The second application is to test the difference of two weighted areas under the ROC curve (WAUC) from a paired two sample study. The correlation between the two WAUC complicates the asymptotic distribution of the test statistic. We then employ the bootstrap methods to gain satisfactory inference results. Simulations and examples are supplied in this article to confirm the merits of the bootstrap methods.  相似文献   

18.
We develop semiparametric and parametric transformation models for estimation and comparison of ROC curves derived from measurements from two diagnostic tests on the same subjects. We assume the existence of transformed measurement scales, one for each test, on which the paired measurements have bivariate normal distributions. The resulting pair of ROC curves are estimated by maximum likelihood algorithms, using joint rank data in the semiparametric model with unspecified transformations and using Box-Cox transformations in the parametric transformation case. Several hypothesis tests for comparing the two ROC curves, or characteristics of them, are developed. Two clinical examples are presented and simulation results are provided.  相似文献   

19.
Abstract

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve and surface are useful tools to assess the ability of diagnostic tests to discriminate between ordered classes or groups. To define these diagnostic tests, selecting the optimal thresholds that maximize the accuracy of these tests is required. One procedure that is commonly used to find the optimal thresholds is by maximizing what is known as Youden’s index. This article presents nonparametric predictive inference (NPI) for selecting the optimal thresholds of a diagnostic test. NPI is a frequentist statistical method that is explicitly aimed at using few modeling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. Based on multiple future observations, the NPI approach is presented for selecting the optimal thresholds for two-group and three-group scenarios. In addition, a pairwise approach has also been presented for the three-group scenario. The article ends with an example to illustrate the proposed methods and a simulation study of the predictive performance of the proposed methods along with some classical methods such as Youden index. The NPI-based methods show some interesting results that overcome some of the issues concerning the predictive performance of Youden’s index.  相似文献   

20.
In many situations the diagnostic decision is not limited to a binary choice. Binary statistical tools such as receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) need to be expanded to address three-category classification problem. Previous authors have suggest various ways to model the extension of AUC but not the ROC surface. Only simple parametric approaches are proposed for modeling the ROC measure under the assumption that test results all follow normal distributions. We study the estimation methods of three-dimensional ROC surfaces with nonparametric and semiparametric estimators. Asymptotical results are provided as a basis for statistical inference. Simulation studies are performed to assess the validity of our proposed methods in finite samples. We consider an Alzheimer's disease example from a clinical study in the US as an illustration. The nonparametric and semiparametric modelling approaches for the three way ROC analysis can be readily generalized to diagnostic problems with more than three classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号