首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the asymptotic behaviour of the false discovery and non‐discovery proportions of the dynamic adaptive procedure under some dependence structure. A Bahadur‐type representation of the cut point in simultaneously performing a large scale of tests is presented. The asymptotic bias decompositions of the false discovery and non‐discovery proportions are given under some dependence structure. In addition to existing literatures, we find that the randomness due to the dynamic selection of the tuning parameter in estimating the true null rate serves as a source of the approximation error in the Bahadur representation and enters into the asymptotic bias term of the false discovery proportion and those of the false non‐discovery proportion. The theory explains to some extent why some seemingly attractive dynamic adaptive procedures do not outperform the competing fixed adaptive procedures substantially in some situations. Simulations justify our theory and findings.  相似文献   

2.
We consider hypothesis testing problems for low‐dimensional coefficients in a high dimensional additive hazard model. A variance reduced partial profiling estimator (VRPPE) is proposed and its asymptotic normality is established, which enables us to test the significance of each single coefficient when the data dimension is much larger than the sample size. Based on the p‐values obtained from the proposed test statistics, we then apply a multiple testing procedure to identify significant coefficients and show that the false discovery rate can be controlled at the desired level. The proposed method is also extended to testing a low‐dimensional sub‐vector of coefficients. The finite sample performance of the proposed testing procedure is evaluated by simulation studies. We also apply it to two real data sets, with one focusing on testing low‐dimensional coefficients and the other focusing on identifying significant coefficients through the proposed multiple testing procedure.  相似文献   

3.
In this paper, we translate variable selection for linear regression into multiple testing, and select significant variables according to testing result. New variable selection procedures are proposed based on the optimal discovery procedure (ODP) in multiple testing. Due to ODP’s optimality, if we guarantee the number of significant variables included, it will include less non significant variables than marginal p-value based methods. Consistency of our procedures is obtained in theory and simulation. Simulation results suggest that procedures based on multiple testing have improvement over procedures based on selection criteria, and our new procedures have better performance than marginal p-value based procedures.  相似文献   

4.
This paper deals with the problem of predicting the real‐valued response variable using explanatory variables containing both multivariate random variable and random curve. The proposed functional partial linear single‐index model treats the multivariate random variable as linear part and the random curve as functional single‐index part, respectively. To estimate the non‐parametric link function, the functional single‐index and the parameters in the linear part, a two‐stage estimation procedure is proposed. Compared with existing semi‐parametric methods, the proposed approach requires no initial estimation and iteration. Asymptotical properties are established for both the parameters in the linear part and the functional single‐index. The convergence rate for the non‐parametric link function is also given. In addition, asymptotical normality of the error variance is obtained that facilitates the construction of confidence region and hypothesis testing for the unknown parameter. Numerical experiments including simulation studies and a real‐data analysis are conducted to evaluate the empirical performance of the proposed method.  相似文献   

5.
Consider testing multiple hypotheses using tests that can only be evaluated by simulation, such as permutation tests or bootstrap tests. This article introduces MMCTest , a sequential algorithm that gives, with arbitrarily high probability, the same classification as a specific multiple testing procedure applied to ideal p‐values. The method can be used with a class of multiple testing procedures that include the Benjamini and Hochberg false discovery rate procedure and the Bonferroni correction controlling the familywise error rate. One of the key features of the algorithm is that it stops sampling for all the hypotheses that can already be decided as being rejected or non‐rejected. MMCTest can be interrupted at any stage and then returns three sets of hypotheses: the rejected, the non‐rejected and the undecided hypotheses. A simulation study motivated by actual biological data shows that MMCTest is usable in practice and that, despite the additional guarantee, it can be computationally more efficient than other methods.  相似文献   

6.
Simultaneously testing a family of n null hypotheses can arise in many applications. A common problem in multiple hypothesis testing is to control Type-I error. The probability of at least one false rejection referred to as the familywise error rate (FWER) is one of the earliest error rate measures. Many FWER-controlling procedures have been proposed. The ability to control the FWER and achieve higher power is often used to evaluate the performance of a controlling procedure. However, when testing multiple hypotheses, FWER and power are not sufficient for evaluating controlling procedure’s performance. Furthermore, the performance of a controlling procedure is also governed by experimental parameters such as the number of hypotheses, sample size, the number of true null hypotheses and data structure. This paper evaluates, under various experimental settings, the performance of some FWER-controlling procedures in terms of five indices, the FWER, the false discovery rate, the false non-discovery rate, the sensitivity and the specificity. The results can provide guidance on how to select an appropriate FWER-controlling procedure to meet a study’s objective.  相似文献   

7.
Many model‐free dimension reduction methods have been developed for high‐dimensional regression data but have not paid much attention on problems with non‐linear confounding. In this paper, we propose an inverse‐regression method of dependent variable transformation for detecting the presence of non‐linear confounding. The benefit of using geometrical information from our method is highlighted. A ratio estimation strategy is incorporated in our approach to enhance the interpretation of variable selection. This approach can be implemented not only in principal Hessian directions (PHD) but also in other recently developed dimension reduction methods. Several simulation examples that are reported for illustration and comparisons are made with sliced inverse regression and PHD in ignorance of non‐linear confounding. An illustrative application to one real data is also presented.  相似文献   

8.
Motivated by the need to analyze the National Longitudinal Surveys data, we propose a new semiparametric longitudinal mean‐covariance model in which the effects on dependent variable of some explanatory variables are linear and others are non‐linear, while the within‐subject correlations are modelled by a non‐stationary autoregressive error structure. We develop an estimation machinery based on least squares technique by approximating non‐parametric functions via B‐spline expansions and establish the asymptotic normality of parametric estimators as well as the rate of convergence for the non‐parametric estimators. We further advocate a new model selection strategy in the varying‐coefficient model framework, for distinguishing whether a component is significant and subsequently whether it is linear or non‐linear. Besides, the proposed method can also be employed for identifying the true order of lagged terms consistently. Monte Carlo studies are conducted to examine the finite sample performance of our approach, and an application of real data is also illustrated.  相似文献   

9.
Summary.  The use of a fixed rejection region for multiple hypothesis testing has been shown to outperform standard fixed error rate approaches when applied to control of the false discovery rate. In this work it is demonstrated that, if the original step-up procedure of Benjamini and Hochberg is modified to exercise adaptive control of the false discovery rate, its performance is virtually identical to that of the fixed rejection region approach. In addition, the dependence of both methods on the proportion of true null hypotheses is explored, with a focus on the difficulties that are involved in the estimation of this quantity.  相似文献   

10.
In this paper, we propose a robust estimation procedure for a class of non‐linear regression models when the covariates are contaminated with Laplace measurement error, aiming at constructing an estimation procedure for the regression parameters which are less affected by the possible outliers, and heavy‐tailed underlying distribution, as well as reducing the bias introduced by the measurement error. Starting with the modal regression procedure developed for the measurement error‐free case, a non‐trivial modification is made so that the modified version can effectively correct the potential bias caused by measurement error. Large sample properties of the proposed estimate, such as the convergence rate and the asymptotic normality, are thoroughly investigated. A simulation study and real data application are conducted to illustrate the satisfying finite sample performance of the proposed estimation procedure.  相似文献   

11.
Variance estimation is a fundamental problem in statistical modelling. In ultrahigh dimensional linear regression where the dimensionality is much larger than the sample size, traditional variance estimation techniques are not applicable. Recent advances in variable selection in ultrahigh dimensional linear regression make this problem accessible. One of the major problems in ultrahigh dimensional regression is the high spurious correlation between the unobserved realized noise and some of the predictors. As a result, the realized noises are actually predicted when extra irrelevant variables are selected, leading to serious underestimate of the level of noise. We propose a two-stage refitted procedure via a data splitting technique, called refitted cross-validation, to attenuate the influence of irrelevant variables with high spurious correlations. Our asymptotic results show that the resulting procedure performs as well as the oracle estimator, which knows in advance the mean regression function. The simulation studies lend further support to our theoretical claims. The naive two-stage estimator and the plug-in one-stage estimators using the lasso and smoothly clipped absolute deviation are also studied and compared. Their performances can be improved by the reffitted cross-validation method proposed.  相似文献   

12.
Multiple Hypotheses Testing with Weights   总被引:2,自引:0,他引:2  
In this paper we offer a multiplicity of approaches and procedures for multiple testing problems with weights. Some rationale for incorporating weights in multiple hypotheses testing are discussed. Various type-I error-rates and different possible formulations are considered, for both the intersection hypothesis testing and the multiple hypotheses testing problems. An optimal per family weighted error-rate controlling procedure a la Spjotvoll (1972) is obtained. This model serves as a vehicle for demonstrating the different implications of the approaches to weighting. Alternative approach es to that of Holm (1979) for family-wise error-rate control with weights are discussed, one involving an alternative procedure for family-wise error-rate control, and the other involving the control of a weighted family-wise error-rate. Extensions and modifications of the procedures based on Simes (1986) are given. These include a test of the overall intersec tion hypothesis with general weights, and weighted sequentially rejective procedures for testing the individual hypotheses. The false discovery rate controlling approach and procedure of Benjamini & Hochberg (1995) are extended to allow for different weights.  相似文献   

13.
Variable selection problem is one of the most important tasks in regression analysis, especially in a high-dimensional setting. In this paper, we study this problem in the context of scalar response functional regression model, which is a linear model with scalar response and functional regressors. The functional model can be represented by certain multiple linear regression model via basis expansions of functional variables. Based on this model and random subspace method of Mielniczuk and Teisseyre (Comput Stat Data Anal 71:725–742, 2014), two simple variable selection procedures for scalar response functional regression model are proposed. The final functional model is selected by using generalized information criteria. Monte Carlo simulation studies conducted and a real data example show very satisfactory performance of new variable selection methods under finite samples. Moreover, they suggest that considered procedures outperform solutions found in the literature in terms of correctly selected model, false discovery rate control and prediction error.  相似文献   

14.
The paper considers the problem of consistent variable selection with the use of stepdown procedures in the classical linear regression model and for the model with dependent errors. The stated results complete the results obtained by Bunea et al. [Consistent variable selection in high dimensional regression via multiple testing. J Stat Plann Inference. 2006;136(12):4349–4364].  相似文献   

15.
Partial linear models have been widely used as flexible method for modelling linear components in conjunction with non‐parametric ones. Despite the presence of the non‐parametric part, the linear, parametric part can under certain conditions be estimated with parametric rate. In this paper, we consider a high‐dimensional linear part. We show that it can be estimated with oracle rates, using the least absolute shrinkage and selection operator penalty for the linear part and a smoothness penalty for the nonparametric part.  相似文献   

16.
One of the standard variable selection procedures in multiple linear regression is to use a penalisation technique in least‐squares (LS) analysis. In this setting, many different types of penalties have been introduced to achieve variable selection. It is well known that LS analysis is sensitive to outliers, and consequently outliers can present serious problems for the classical variable selection procedures. Since rank‐based procedures have desirable robustness properties compared to LS procedures, we propose a rank‐based adaptive lasso‐type penalised regression estimator and a corresponding variable selection procedure for linear regression models. The proposed estimator and variable selection procedure are robust against outliers in both response and predictor space. Furthermore, since rank regression can yield unstable estimators in the presence of multicollinearity, in order to provide inference that is robust against multicollinearity, we adjust the penalty term in the adaptive lasso function by incorporating the standard errors of the rank estimator. The theoretical properties of the proposed procedures are established and their performances are investigated by means of simulations. Finally, the estimator and variable selection procedure are applied to the Plasma Beta‐Carotene Level data set.  相似文献   

17.
A modification of the critical values of Simes’ test is suggested in this article when the underlying test statistics are multivariate normal with a common non-negative correlation, yielding a more powerful test than the original Simes’ test. A step-up multiple testing procedure with these modified critical values, which is shown to control false discovery rate (FDR), is presented as a modification of the traditional Benjamini–Hochberg (BH) procedure. Simulations were carried out to compare this modified BH procedure with the BH and other modified BH procedures in terms of false non-discovery rate (FNR), 1–FDR–FNR and average power. The present modified BH procedure is observed to perform well compared to others when the test statistics are highly correlated and most of the hypotheses are true.  相似文献   

18.
19.
The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation. The Canadian Journal of Statistics 47: 352–373; 2019 © 2019 Statistical Society of Canada  相似文献   

20.
It is of interest in some applications to determine whether there is a relationship between a hazard rate function (or a cumulative incidence function) and a mark variable which is only observed at uncensored failure times. We develop nonparametric tests for this problem when the mark variable is continuous. Tests are developed for the null hypothesis that the mark-specific hazard rate is independent of the mark versus ordered and two-sided alternatives expressed in terms of mark-specific hazard functions and mark-specific cumulative incidence functions. The test statistics are based on functionals of a bivariate test process equal to a weighted average of differences between a Nelson-Aalen-type estimator of the mark-specific cumulative hazard function and a nonparametric estimator of this function under the null hypothesis. The weight function in the test process can be chosen so that the test statistics are asymptotically distribution-free. Asymptotically correct critical values are obtained through a simple simulation procedure. The testing procedures are shown to perform well in numerical studies, and are illustrated with an AIDS clinical trial example. Specifically, the tests are used to assess if the instantaneous or absolute risk of treatment failure depends on the amount of accumulation of drug resistance mutations in a subject's HIV virus. This assessment helps guide development of anti-HIV therapies that surmount the problem of drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号