首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The innovations of an INAR(1) process (integer-valued autoregressive) are usually assumed to be unobservable. There are, however, situations in practice, where also the innovations can be uncovered, i.e. where we are concerned with a fully observed INAR(1) process. We analyze stochastic properties of such a fully observed INAR(1) process and explore the relation between the INAR(1) model and certain metapopulation models. We show how the additional knowledge about the innovations can be used for parameter estimation, for model diagnostics, and for forecasting. Our findings are illustrated with two real-data examples.  相似文献   

2.
This article is concerned with the outliers in GARCH models. An iterative procedure is given for testing the presence of any type of the four common outliers. Since the distribution of test statistic cannot be obtained analytically, its distributional behavior is investigated via a simulation study. The simulation study is based on estimation of residuals standard deviation (σν), which are obtained using two methods, median absolute deviation method (MAD), and omit-one method. The proposed procedure is employed for testing the presence of outliers in weekly light oil price Indexes of Iran during 1997 to 2010.  相似文献   

3.
The first-order integer-valued autoregressive (INAR(1)) process with Poisson marginal distributions is considered. It is shown that the sample autocovariance function of the model is asymptotically normally distributed. We derive asymptotic distribution of Yule-Walker type estimators of parameters. It turns out that our Yule-Walker type estimators are better than the conditional least squares estimators proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987). also, we study the relationship between the model andM/M/∞ queueing system.  相似文献   

4.
5.
Abstract

Binomial integer-valued AR processes have been well studied in the literature, but there is little progress in modeling bounded integer-valued time series with outliers. In this paper, we first review some basic properties of the binomial integer-valued AR(1) process and then we introduce binomial integer-valued AR(1) processes with two classes of innovational outliers. We focus on the joint conditional least squares (CLS) and the joint conditional maximum likelihood (CML) estimates of models’ parameters and the probability of occurrence of the outlier. Their large-sample properties are illustrated by simulation studies. Artificial and real data examples are used to demonstrate good performances of the proposed models.  相似文献   

6.
This paper studies outlier detection for multilevel models. Approximate formulae for outlier detection in estimating both fixed and random parameters under the mean-shift outlier model are derived, and a test for multiple outliers is proposed. These results can be used to detect outlier units at any levels. Detection of outlier units related to random parts is also studied. Analysis of an example shows that the proposed method is effective in identifying outliers in multilevel models.  相似文献   

7.
8.
The present work proposes a new integer valued autoregressive model with Poisson marginal distribution based on the mixing Pegram and dependent Bernoulli thinning operators. Properties of the model are discussed. We consider several methods for estimating the unknown parameters of the model. Also, the classical and Bayesian approaches are used for forecasting. Simulations are performed for the performance of these estimators and forecasting methods. Finally, the analysis of two real data has been presented for illustrative purposes.  相似文献   

9.
The growth curve model introduced by Potthoff and Roy (1964) is a general statistical model which includes as special cases regression models and both univariate and multivariate analysis of variance models. In this paper, we discuss procedures for detection of outliers in growth curve models for mean-slippage and dispersion-slippage outlier model. The distributions of the test statistics are discussed and the values of significant probabilities are given using Bonferronl's bounds. Some simulation results are also presented.  相似文献   

10.
Abstract

In this paper, we present a fractional decomposition of the probability generating function of the innovation process of the first-order non-negative integer-valued autoregressive [INAR(1)] process to obtain the corresponding probability mass function. We also provide a comprehensive review of integer-valued time series models, based on the concept of thinning operators with geometric-type marginals. In particular, we develop two fractional approaches to obtain the distribution of innovation processes of the INAR(1) model and show that the distribution of the innovations sequence has geometric-type distribution. These approaches are discussed in detail and illustrated through a few examples.  相似文献   

11.
The INAR(1) model (integer-valued autoregressive) is commonly used to model serially dependent processes of Poisson counts. We propose several asymptotic simultaneous confidence regions for the two parameters of a Poisson INAR(1) model, and investigate their performance and robustness for finite-length time series in a simulation study. Practical recommendations are derived, and the application of the confidence regions is illustrated by a real-data example.  相似文献   

12.
In this article, we present the explicit expressions for the higher-order moments and cumulants of the first-order random coefficient integer-valued autoregressive (RCINAR(1)) process. The spectral and bispectral density functions are also obtained, which can characterize the RCINAR(1) process in the frequency domain. We use a frequency domain approach which is named Whittle criterion to estimate the parameters of the process. We propose a test statistic which is based on the frequency domain approach for the hypothesis test, H0: α = 0?H1: 0 < α < 1, where α is the mean of the random coefficient in the process. The asymptotic distribution of the test statistic is obtained. We compare the proposed test statistic with other statistics that can test serial dependence in time series of count via a typically numerical simulation, which indicates that our proposed test statistic has a good power.  相似文献   

13.
An integer-valued autoregressive model with random time delay under random environment is presented. The geometric ergodicity of the iterative sequence determined by this new model is discussed. Moreover, sufficient conditions for stationarity and β-mixing property with exponential decay for the INAR model with random time delay under random environment are developed.  相似文献   

14.
A mixed integer-valued autoregressive model of order one, based on the binomial and the generalized binomial thinning operator is introduced. Geometric marginal distribution is considered. Properties of the model are analysed, unknown parameters are estimated and some numerical results of the estimates are obtained. Finally, model is applied on two real data sets and compared to some relevant models.  相似文献   

15.
ABSTRACT

This article studies the outlier detection problem in mixed regressive-spatial autoregressive model. The formulae for testing outliers and their approximate distributions are derived under the mean-shift model and the variance-weight model, respectively. The simulation studies are conducted for examining the power and size of the test, as well as for the detection of outliers when a simulated data contains several outliers. A real data is analyzed to illustrate the proposed method, and modified models based on mean-shift and variance-weight models in which detected outliers are taken into account are suggested to deal with the outliers and confirm theconclusions.  相似文献   

16.
Extensions of recent results for detection of mean slippage type outliers from i.i.d. multivariate normal and elliptically symmetric distributions are made to symmetric case, that is, when the observations are equicorrelated. The main tool used is Wijsman's (1967) representation theorem. The results obtained can be viewed as a robustness property of the use of Mardia's multivariate kurtosis as a locally optimal test statistic to detect outliers against equicorrelated distributions.  相似文献   

17.
In order to describe or generate so-called outliers in univariate statistical data, contamination models are often used. These models assume that k out of n independent random variables are shifted or multiplicated by some constant, whereas the other observations still come i.i.d. from some common target distribution. Of course, these contaminants do not necessarily stick out as the extremes in the sample. Moreover, it is the amount and magnitude of ‘contamination” which determines the number of obvious outliers. Using the concept of Davies and Gather (1993) to formalize the outlier notion we quantify the amount of contamination needed to produce a prespecified expected number of ‘genuine’ outliers. In particular, we demonstrate that for sample of moderate size from a normal target distribution a rather large shift of the contaminants is necessary to yield a certain expected number of outliers. Such an insight is of interest when designing simulation studies where outliers shoulod occur as well as in theoretical investigations on outliers.  相似文献   

18.
Abstract

This paper considers an extension of the classical discrete time risk model for which the claim numbers are assumed to be temporal dependence and overdispersion. The risk model proposed is based on the first-order integer-valued autoregressive (INAR(1)) process with discrete compound Poisson distributed innovations. The explicit expression for the moment generating function of the discounted aggregate claim amount is derived. Some numerical examples are provided to illustrate the impacts of dependence and overdispersion on related quantities such as the stop-loss premium, the value at risk and the tail value at risk.  相似文献   

19.
Cossette et al. (2010 Cossette, H., Marceau, E., Maume-Deschamps, V. (2010). Discerte-time risk models based on time series for count random variables. ASTIN Bull. 40:123150.[Crossref], [Web of Science ®] [Google Scholar], 2011 Cossette, H., Marceau, E., Toureille, F. (2011). risk models based on time series for count random variables. Insur. Math. Econ. 48:1928.[Crossref], [Web of Science ®] [Google Scholar]) gave a novel collective risk model where the total numbers of claims satisfy the first-order integer-valued autoregressive process. For a risk model, it is interesting to investigate the upper bound of ruin probability. However, the loss increments of the above model are dependent; it is difficult to derive the upper bound of ruin probability. In this article, we propose an approximation model with stationary independent increments. The upper bound of ruin probability and the adjustment coefficient are derived. The approximation model is illustrated via four simulated examples. Results show that the gap of the approximation model and dependent model can be ignored by adjusting values of parameters.  相似文献   

20.
Integer-valued time series models and their applications have attracted a lot of attention over the last years. In this paper, we introduce a class of observation-driven random coefficient integer-valued autoregressive processes based on negative binomial thinning, where the autoregressive parameter depends on the observed values of the previous moment. Basic probability and statistics properties of the process are established. The unknown parameters are estimated by the conditional least squares and empirical likelihood methods. Specially, we consider three aspects of the empirical likelihood method: maximum empirical likelihood estimate, confidence region and EL test. The performance of the two estimation methods is compared through simulation studies. Finally, an application to a real data example is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号