首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we consider ${E(x\otimes xx^{\prime})}$ and ${E(xx^{\prime }\otimes xx^{\prime})}$ for a random vector x where x i has existing moments up to the fourth order and where the higher moments may depend on i. This extends previous results which assumed a common higher moment and E(xx??)?=?I.  相似文献   

2.
In this paper, by relaxing the mixing coefficients to α(n) = O(n ), β > 3, we investigate the Bahadur representation of sample quantiles under α-mixing sequence and obtain the rate as ${O(n^{-\frac{1}{2}}(\log\log n\cdot\log n)^{\frac{1}{2}})}$ . Meanwhile, for any δ > 0, by strengthening the mixing coefficients to α(n) = O(n ), ${\beta > \max\{3+\frac{5}{1+\delta},1+\frac{2}{\delta}\}}$ , we have the rate as ${O(n^{-\frac{3}{4}+\frac{\delta}{4(2+\delta)}}(\log\log n\cdot \log n)^{\frac{1}{2}})}$ . Specifically, if ${\delta=\frac{\sqrt{41}-5}{4}}$ and ${\beta > \frac{\sqrt{41}+7}{2}}$ , then the rate is presented as ${O(n^{-\frac{\sqrt{41}+5}{16}}(\log\log n\cdot \log n)^{\frac{1}{2}})}$ .  相似文献   

3.
Given a stationary multidimensional spatial process $\left\{ Z_{\mathbf{i}}=\left( X_{\mathbf{i}},\ Y_{\mathbf{i}}\right) \in \mathbb R ^d\right. \left. \times \mathbb R ,\mathbf{i}\in \mathbb Z ^{N}\right\} $ , we investigate a kernel estimate of the spatial conditional mode function of the response variable $Y_{\mathbf{i}}$ given the explicative variable $X_{\mathbf{i}}$ . Consistency in $L^p$ norm and strong convergence of the kernel estimate are obtained when the sample considered is a $\alpha $ -mixing sequence. An application to real data is given in order to illustrate the behavior of our methodology.  相似文献   

4.
We investigate methods for the design of sample surveys, and address the traditional resistance of survey samplers to the use of model-based methods by incorporating model robustness at the design stage. The designs are intended to be sufficiently flexible and robust that resulting estimates, based on the designer’s best guess at an appropriate model, remain reasonably accurate in a neighbourhood of this central model. Thus, consider a finite population of N units in which a survey variable Y is related to a q dimensional auxiliary variable x. We assume that the values of x are known for all N population units, and that we will select a sample of nN population units and then observe the n corresponding values of Y. The objective is to predict the population total $T=\sum_{i=1}^{N}Y_{i}$ . The design problem which we consider is to specify a selection rule, using only the values of the auxiliary variable, to select the n units for the sample so that the predictor has optimal robustness properties. We suppose that T will be predicted by methods based on a linear relationship between Y—possibly transformed—and given functions of x. We maximise the mean squared error of the prediction of T over realistic neighbourhoods of the fitted linear relationship, and of the assumed variance and correlation structures. This maximised mean squared error is then minimised over the class of possible samples, yielding an optimally robust (‘minimax’) design. To carry out the minimisation step we introduce a genetic algorithm and discuss its tuning for maximal efficiency.  相似文献   

5.
In this paper, we propose to change the traditional monitored statistic in a control chart p, by changing the sampling proportion ${\hat{p}}$ to a new statistics denoted as ${\tilde{p}}$ . We aim to minimize problems in designing the control chart p for high quality processes when only a small sample size is available. The idea of the new statistics is simple, as it involves taking two independent samples of a Bernoulli population. From each sample, the sampling proportion is calculated, and the new statistic to monitor is the weighted mean of the sampling proportion of each sample employed to weight the overall sampling proportion. We note that the control chart p that employs the new ${\tilde{p}}$ statistic provides more in-control values of average run length closer to the usual fixed value of 370 than the traditional statistic, that is, the sampling proportion. Numerical examples illustrate the new proposal.  相似文献   

6.
Krämer (Sankhy $\bar{\mathrm{a }}$ 42:130–131, 1980) posed the following problem: “Which are the $\mathbf{y}$ , given $\mathbf{X}$ and $\mathbf{V}$ , such that OLS and Gauss–Markov are equal?”. In other words, the problem aimed at identifying those vectors $\mathbf{y}$ for which the ordinary least squares (OLS) and Gauss–Markov estimates of the parameter vector $\varvec{\beta }$ coincide under the general Gauss–Markov model $\mathbf{y} = \mathbf{X} \varvec{\beta } + \mathbf{u}$ . The problem was later called a “twist” to Kruskal’s Theorem, which provides conditions necessary and sufficient for the OLS and Gauss–Markov estimates of $\varvec{\beta }$ to be equal. The present paper focuses on a similar problem to the one posed by Krämer in the aforementioned paper. However, instead of the estimation of $\varvec{\beta }$ , we consider the estimation of the systematic part $\mathbf{X} \varvec{\beta }$ , which is a natural consequence of relaxing the assumption that $\mathbf{X}$ and $\mathbf{V}$ are of full (column) rank made by Krämer. Further results, dealing with the Euclidean distance between the best linear unbiased estimator (BLUE) and the ordinary least squares estimator (OLSE) of $\mathbf{X} \varvec{\beta }$ , as well as with an equality between BLUE and OLSE are also provided. The calculations are mostly based on a joint partitioned representation of a pair of orthogonal projectors.  相似文献   

7.
8.
We consider equalities between the ordinary least squares estimator ( $\mathrm {OLSE} $ ), the best linear unbiased estimator ( $\mathrm {BLUE} $ ) and the best linear unbiased predictor ( $\mathrm {BLUP} $ ) in the general linear model $\{ \mathbf y , \mathbf X \varvec{\beta }, \mathbf V \}$ extended with the new unobservable future value $ \mathbf y _{*}$ of the response whose expectation is $ \mathbf X _{*}\varvec{\beta }$ . Our aim is to provide some new insight and new proofs for the equalities under consideration. We also collect together various expressions, without rank assumptions, for the $\mathrm {BLUP} $ and provide new results giving upper bounds for the Euclidean norm of the difference between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {BLUE} ( \mathbf X _{*}\varvec{\beta })$ and between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {OLSE} ( \mathbf X _{*}\varvec{\beta })$ . A remark is made on the application to small area estimation.  相似文献   

9.
Given a random sample of size \(n\) with mean \(\overline{X} \) and standard deviation \(s\) from a symmetric distribution \(F(x; \mu , \sigma ) = F_{0} (( x- \mu ) / \sigma ) \) with \(F_0\) known, and \(X \sim F(x;\; \mu , \sigma )\) independent of the sample, we show how to construct an expansion \( a_n^{\prime } = \sum _{i=0}^\infty \ c_i \ n^{-i} \) such that \(\overline{X} - s a_n^{\prime } < X < \overline{X} + s a_n^{\prime } \) with a given probability \(\beta \) . The practical value of this result is illustrated by simulation and using a real data set.  相似文献   

10.
11.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

12.
SupposeL(X) is the law of a positive random variableX, andZ is positive and independent ofX. Admissible solution pairs (L(X),L(Z)) are sought for the in-law equation $\hat X \cong X o Z$ °Z, where $L\left( {\hat X} \right)$ is a weighted law constructed fromL(X), and ° is a binary operation which in some sense is increasing. The class of weights includes length biasing of arbitrary order. When ° is addition and the weighting is ordinary length biasing, the class of admissibleL(X) comprises the positive infinitely divisible laws. Examples are given subsuming all known specific cases. Some extensions for general order of length-biasing are discussed.  相似文献   

13.
A simultaneous confidence band provides useful information on the plausible range of an unknown regression model function, just as a confidence interval gives the plausible range of an unknown parameter. For a multiple linear regression model, confidence bands of different shapes, such as the hyperbolic band and the constant width band, can be constructed and the predictor variable region over which a confidence band is constructed can take various forms. One interesting but unsolved problem is to find the optimal (shape) confidence band over an ellipsoidal region χE under the Minimum Volume Confidence Set (MVCS) criterion of Liu and Hayter (2007 Liu, W., Hayter, A.J. (2007). Minimum area confidence set optimality for confidence bands in simple linear regression. J. Amer. Statist. Assoc. 102:181190.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) and Liu et al. (2009 Liu, W., Bretz, F., Hayter, A.J., Wynn, H.P. (2009). Assessing non-superiority, non-inferiority or equivalence when comparing two regression models over a restricted covariate region. Biometrics 65:12791287.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). This problem is challenging as it involves optimization over an unknown function that determines the shape of the confidence band over χE. As a step towards solving this difficult problem, in this paper, we introduce a family of confidence bands over χE, called the inner-hyperbolic bands, which includes the hyperbolic and constant-width bands as special cases. We then search for the optimal confidence band within this family under the MVCS criterion. The conclusion from this study is that the hyperbolic band is not optimal even within this family of inner-hyperbolic bands and so cannot be the overall optimal band. On the other hand, the constant width band can be optimal within the family of inner-hyperbolic bands when the region χE is small and so might be the overall optimal band.  相似文献   

14.
Confidence bands in nonparametric regression have been studied for a long time with data assumed to be generated from independent and identically distributed (iid) random variables. The methods and theoretical results for iid data, however, do not directly apply to data from stratified multistage samples. In this paper, we extend the confidence bands introduced by Zhang and Lu (2008 Zhang, G., Lu, Y. (2008). Adjusted confidence bands in nonparametric regression. Communications in Statistics-Simulation and Computation 37: 106113.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) for iid case to complex surveys based on an entirely data-driven procedure; the proposed confidence bands incorporate both the sampling weights and the kernel weights. Simulation studies show that the proposed method works well.  相似文献   

15.
The models in structured families correspond to the treatments of a fixed effects base design \(\pi \) . Then the action of factors in \(\pi \) , on the fixed effects parameters of the models, is studied. Analyzing such a families enables the study of the action of nesting factors on the effects and interactions of nested factors. When \(\pi \) has an orthogonal structure, the family of models is said to be orthogonal. The models in the family can have one, two or more strata. Models with more than one stratum are obtained through nesting of one stratum models. A general treatment of the case in which the base design has orthogonal structure is presented and a special emphasis is given to the families of prime basis factorials models. These last models are, as it is well known, widely used in fertilization trials.  相似文献   

16.
Letx i(1)≤x i(2)≤…≤x i(ri) be the right-censored samples of sizesn i from theith exponential distributions $\sigma _i^{ - 1} exp\{ - (x - \mu _i )\sigma _i^{ - 1} \} ,i = 1,2$ where μi and σi are the unknown location and scale parameters respectively. This paper deals with the posteriori distribution of the difference between the two location parameters, namely μ21, which may be represented in the form $\mu _2 - \mu _1 \mathop = \limits^\mathcal{D} x_{2(1)} - x_{1(1)} + F_1 \sin \theta - F_2 \cos \theta $ where $\mathop = \limits^\mathcal{D} $ stands for equal in distribution,F i stands for the central F-variable with [2,2(r i?1)] degrees of freedom and $\tan \theta = \frac{{n_2 s_{x1} }}{{n_1 s_{x2} }}, s_{x1} = (r_1 - 1)^{ - 1} \left\{ {\sum\limits_{j = 1}^{r_i - 1} {(n_i - j)(x_{i(j + 1)} - x_{i(j)} )} } \right\}$ The paper also derives the distribution of the statisticV=F 1 sin σ?F 2 cos σ and tables of critical values of theV-statistic are provided for the 5% level of significance and selected degrees of freedom.  相似文献   

17.
This article presents methods for the construction of two-sided and one-sided simultaneous hyperbolic bands for the logistic and probit regression models when the predictor variable is restricted to a given interval. The bands are constructed based on the asymptotic properties of the maximum likelihood estimators. Past articles have considered building two-sided asymptotic confidence bands for the logistic model, such as Piegorsch and Casella (1988 Piegorsch, W.W., Casella, G. (1988). Confidence bands for logistic regression with restricted predictor variables. Biometrics 44:739750.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). However, the confidence bands given by Piegorsch and Casella are conservative under a single interval restriction, and it is shown in this article that their bands can be sharpened using the methods proposed here. Furthermore, no method has yet appeared in the literature for constructing one-sided confidence bands for the logistic model, and no work has been done for building confidence bands for the probit model, over a limited range of the predictor variable. This article provides methods for computing critical points in these areas.  相似文献   

18.
We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL ? D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD 2 L ? using simulations and a real dataset.  相似文献   

19.
Given an orthogonal model
${{\bf \lambda}}=\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i$
an L model
${{\bf y}}={\bf L}\left(\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i\right)+{\bf e}$
is obtained, and the only restriction is the linear independency of the column vectors of matrix L. Special cases of the L models correspond to blockwise diagonal matrices L = D(L 1, . . . , L c ). In multiple regression designs this matrix will be of the form
${\bf L}={\bf D}(\check{{\bf X}}_1,\ldots,\check{{\bf X}}_{c})$
with \({\check{{\bf X}}_j, j=1,\ldots,c}\) the model matrices of the individual regressions, while the original model will have fixed effects. In this way, we overcome the usual restriction of requiring all regressions to have the same model matrix.
  相似文献   

20.
R. Göb 《Statistical Papers》1992,33(1):273-277
In elementary probability theory, as a result of a limiting process the probabilities of aBi(n, p) binomial distribution are approximated by the probabilities of aPo(np) Poisson distribution. Accordingly, in statistical quality control the binomial operating characteristic function \(\mathcal{L}_{n,c} (p)\) is approximated by the Poisson operating characteristic function \(\mathcal{F}_{n,c} (p)\) . The inequality \(\mathcal{L}_{n + 1,c + 1} (p) > \mathcal{L}_{n,c} (p)\) forp∈(0;1) is evident from the interpretation of \(\mathcal{L}_{n + 1,c + 1} (p)\) , \(\mathcal{L}_{n,c} (p)\) as probabilities of accepting a lot. It is shown that the Poisson approximation \(\mathcal{F}_{n,c} (p)\) preserves this essential feature of the binomial operating characteristic function, i.e. that an analogous inequality holds for the Poisson operating characteristic function, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号