首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time‐varying coefficient models are widely used in longitudinal data analysis. These models allow the effects of predictors on response to vary over time. In this article, we consider a mixed‐effects time‐varying coefficient model to account for the within subject correlation for longitudinal data. We show that when kernel smoothing is used to estimate the smooth functions in time‐varying coefficient models for sparse or dense longitudinal data, the asymptotic results of these two situations are essentially different. Therefore, a subjective choice between the sparse and dense cases might lead to erroneous conclusions for statistical inference. In order to solve this problem, we establish a unified self‐normalized central limit theorem, based on which a unified inference is proposed without deciding whether the data are sparse or dense. The effectiveness of the proposed unified inference is demonstrated through a simulation study and an analysis of Baltimore MACS data.  相似文献   

2.
There are several ways to handle within‐subject correlations with a longitudinal discrete outcome, such as mortality. The most frequently used models are either marginal or random‐effects types. This paper deals with a random‐effects‐based approach. We propose a nonparametric regression model having time‐varying mixed effects for longitudinal cancer mortality data. The time‐varying mixed effects in the proposed model are estimated by combining kernel‐smoothing techniques and a growth‐curve model. As an illustration based on real data, we apply the proposed method to a set of prefecture‐specific data on mortality from large‐bowel cancer in Japan.  相似文献   

3.
The authors consider children's behavioural and emotional problems and their relationships with possible predictors. They propose a multivariate transitional mixed‐effects model for a longitudinal study and simultaneously address non‐ignorable missing data in responses and covariates, measurement errors in covariates, and multivariate modelling of the responses and covariate processes. A real dataset is analysed in details using the proposed method with some interesting results. The Canadian Journal of Statistics 37: 435–452; 2009 © 2009 Statistical Society of Canada  相似文献   

4.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

5.
Generalized linear mixed models (GLMMs) are often used for analyzing cluster correlated data, including longitudinal data and repeated measurements. Full unrestricted maximum likelihood (ML) approaches for inference on both fixed‐and random‐effects parameters in GLMMs have been extensively studied in the literature. However, parameter orderings or constraints may occur naturally in practice, and in such cases, the efficiency of a statistical method is improved by incorporating the parameter constraints into the ML estimation and hypothesis testing. In this paper, inference for GLMMs under linear inequality constraints is considered. The asymptotic properties of the constrained ML estimators and constrained likelihood ratio tests for GLMMs have been studied. Simulations investigated the empirical properties of the constrained ML estimators, compared to their unrestricted counterparts. An application to a recent survey on Canadian youth smoking patterns is also presented. As these survey data exhibit natural parameter orderings, a constrained GLMM has been considered for data analysis. The Canadian Journal of Statistics 40: 243–258; 2012 © 2012 Crown in the right of Canada  相似文献   

6.
In this paper, a simulation study is conducted to systematically investigate the impact of different types of missing data on six different statistical analyses: four different likelihood‐based linear mixed effects models and analysis of covariance (ANCOVA) using two different data sets, in non‐inferiority trial settings for the analysis of longitudinal continuous data. ANCOVA is valid when the missing data are completely at random. Likelihood‐based linear mixed effects model approaches are valid when the missing data are at random. Pattern‐mixture model (PMM) was developed to incorporate non‐random missing mechanism. Our simulations suggest that two linear mixed effects models using unstructured covariance matrix for within‐subject correlation with no random effects or first‐order autoregressive covariance matrix for within‐subject correlation with random coefficient effects provide well control of type 1 error (T1E) rate when the missing data are completely at random or at random. ANCOVA using last observation carried forward imputed data set is the worst method in terms of bias and T1E rate. PMM does not show much improvement on controlling T1E rate compared with other linear mixed effects models when the missing data are not at random but is markedly inferior when the missing data are at random. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Nonlinear mixed‐effects models are being widely used for the analysis of longitudinal data, especially from pharmaceutical research. They use random effects which are latent and unobservable variables so the random‐effects distribution is subject to misspecification in practice. In this paper, we first study the consequences of misspecifying the random‐effects distribution in nonlinear mixed‐effects models. Our study is focused on Gauss‐Hermite quadrature, which is now the routine method for calculation of the marginal likelihood in mixed models. We then present a formal diagnostic test to check the appropriateness of the assumed random‐effects distribution in nonlinear mixed‐effects models, which is very useful for real data analysis. Our findings show that the estimates of fixed‐effects parameters in nonlinear mixed‐effects models are generally robust to deviations from normality of the random‐effects distribution, but the estimates of variance components are very sensitive to the distributional assumption of random effects. Furthermore, a misspecified random‐effects distribution will either overestimate or underestimate the predictions of random effects. We illustrate the results using a real data application from an intensive pharmacokinetic study.  相似文献   

8.
Abstract. Continuous proportional outcomes are collected from many practical studies, where responses are confined within the unit interval (0,1). Utilizing Barndorff‐Nielsen and Jørgensen's simplex distribution, we propose a new type of generalized linear mixed‐effects model for longitudinal proportional data, where the expected value of proportion is directly modelled through a logit function of fixed and random effects. We establish statistical inference along the lines of Breslow and Clayton's penalized quasi‐likelihood (PQL) and restricted maximum likelihood (REML) in the proposed model. We derive the PQL/REML using the high‐order multivariate Laplace approximation, which gives satisfactory estimation of the model parameters. The proposed model and inference are illustrated by simulation studies and a data example. The simulation studies conclude that the fourth order approximate PQL/REML performs satisfactorily. The data example shows that Aitchison's technique of the normal linear mixed model for logit‐transformed proportional outcomes is not robust against outliers.  相似文献   

9.
The Lagrange Multiplier (LM) test is one of the principal tools to detect ARCH and GARCH effects in financial data analysis. However, when the underlying data are non‐normal, which is often the case in practice, the asymptotic LM test, based on the χ2‐approximation of critical values, is known to perform poorly, particularly for small and moderate sample sizes. In this paper we propose to employ two re‐sampling techniques to find critical values of the LM test, namely permutation and bootstrap. We derive the properties of exactness and asymptotically correctness for the permutation and bootstrap LM tests, respectively. Our numerical studies indicate that the proposed re‐sampled algorithms significantly improve size and power of the LM test in both skewed and heavy‐tailed processes. We also illustrate our new approaches with an application to the analysis of the Euro/USD currency exchange rates and the German stock index. The Canadian Journal of Statistics 40: 405–426; 2012 © 2012 Statistical Society of Canada  相似文献   

10.
An extension of the generalized linear mixed model was constructed to simultaneously accommodate overdispersion and hierarchies present in longitudinal or clustered data. This so‐called combined model includes conjugate random effects at observation level for overdispersion and normal random effects at subject level to handle correlation, respectively. A variety of data types can be handled in this way, using different members of the exponential family. Both maximum likelihood and Bayesian estimation for covariate effects and variance components were proposed. The focus of this paper is the development of an estimation procedure for the two sets of random effects. These are necessary when making predictions for future responses or their associated probabilities. Such (empirical) Bayes estimates will also be helpful in model diagnosis, both when checking the fit of the model as well as when investigating outlying observations. The proposed procedure is applied to three datasets of different outcome types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we consider the problem of selecting explanatory variables of fixed effects in linear mixed models under covariate shift, which is when the values of covariates in the model for prediction differ from those in the model for observed data. We construct a variable selection criterion based on the conditional Akaike information introduced by Vaida & Blanchard (2005). We focus especially on covariate shift in small area estimation and demonstrate the usefulness of the proposed criterion. In addition, numerical performance is investigated through simulations, one of which is a design‐based simulation using a real dataset of land prices. The Canadian Journal of Statistics 46: 316–335; 2018 © 2018 Statistical Society of Canada  相似文献   

12.
Missing data, and the bias they can cause, are an almost ever‐present concern in clinical trials. The last observation carried forward (LOCF) approach has been frequently utilized to handle missing data in clinical trials, and is often specified in conjunction with analysis of variance (LOCF ANOVA) for the primary analysis. Considerable advances in statistical methodology, and in our ability to implement these methods, have been made in recent years. Likelihood‐based, mixed‐effects model approaches implemented under the missing at random (MAR) framework are now easy to implement, and are commonly used to analyse clinical trial data. Furthermore, such approaches are more robust to the biases from missing data, and provide better control of Type I and Type II errors than LOCF ANOVA. Empirical research and analytic proof have demonstrated that the behaviour of LOCF is uncertain, and in many situations it has not been conservative. Using LOCF as a composite measure of safety, tolerability and efficacy can lead to erroneous conclusions regarding the effectiveness of a drug. This approach also violates the fundamental basis of statistics as it involves testing an outcome that is not a physical parameter of the population, but rather a quantity that can be influenced by investigator behaviour, trial design, etc. Practice should shift away from using LOCF ANOVA as the primary analysis and focus on likelihood‐based, mixed‐effects model approaches developed under the MAR framework, with missing not at random methods used to assess robustness of the primary analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation. The Canadian Journal of Statistics 47: 352–373; 2019 © 2019 Statistical Society of Canada  相似文献   

14.
The authors consider regression analysis for binary data collected repeatedly over time on members of numerous small clusters of individuals sharing a common random effect that induces dependence among them. They propose a mixed model that can accommodate both these structural and longitudinal dependencies. They estimate the parameters of the model consistently and efficiently using generalized estimating equations. They show through simulations that their approach yields significant gains in mean squared error when estimating the random effects variance and the longitudinal correlations, while providing estimates of the fixed effects that are just as precise as under a generalized penalized quasi‐likelihood approach. Their method is illustrated using smoking prevention data.  相似文献   

15.
The joint analysis of longitudinal measurements and survival data is useful in clinical trials and other medical studies. In this paper, we consider a joint model which assumes a linear mixed $tt$ model for longitudinal measurements and a promotion time cure model for survival data and links these two models through a latent variable. A semiparametric inference procedure with an EM algorithm implementation is developed for the parameters in the joint model. The proposed procedure is evaluated in a simulation study and applied to analyze the quality of life and time to recurrence data from a clinical trial on women with early breast cancer. The Canadian Journal of Statistics 40: 207–224; 2012 © 2012 Statistical Society of Canada  相似文献   

16.
Recurrent events involve the occurrences of the same type of event repeatedly over time and are commonly encountered in longitudinal studies. Examples include seizures in epileptic studies or occurrence of cancer tumors. In such studies, interest lies in the number of events that occur over a fixed period of time. One considerable challenge in analyzing such data arises when a large proportion of patients discontinues before the end of the study, for example, because of adverse events, leading to partially observed data. In this situation, data are often modeled using a negative binomial distribution with time‐in‐study as offset. Such an analysis assumes that data are missing at random (MAR). As we cannot test the adequacy of MAR, sensitivity analyses that assess the robustness of conclusions across a range of different assumptions need to be performed. Sophisticated sensitivity analyses for continuous data are being frequently performed. However, this is less the case for recurrent event or count data. We will present a flexible approach to perform clinically interpretable sensitivity analyses for recurrent event data. Our approach fits into the framework of reference‐based imputations, where information from reference arms can be borrowed to impute post‐discontinuation data. Different assumptions about the future behavior of dropouts dependent on reasons for dropout and received treatment can be made. The imputation model is based on a flexible model that allows for time‐varying baseline intensities. We assess the performance in a simulation study and provide an illustration with a clinical trial in patients who suffer from bladder cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
For binomial data analysis, many methods based on empirical Bayes interpretations have been developed, in which a variance‐stabilizing transformation and a normality assumption are usually required. To achieve the greatest model flexibility, we conduct nonparametric Bayesian inference for binomial data and employ a special nonparametric Bayesian prior—the Bernstein–Dirichlet process (BDP)—in the hierarchical Bayes model for the data. The BDP is a special Dirichlet process (DP) mixture based on beta distributions, and the posterior distribution resulting from it has a smooth density defined on [0, 1]. We examine two Markov chain Monte Carlo procedures for simulating from the resulting posterior distribution, and compare their convergence rates and computational efficiency. In contrast to existing results for posterior consistency based on direct observations, the posterior consistency of the BDP, given indirect binomial data, is established. We study shrinkage effects and the robustness of the BDP‐based posterior estimators in comparison with several other empirical and hierarchical Bayes estimators, and we illustrate through examples that the BDP‐based nonparametric Bayesian estimate is more robust to the sample variation and tends to have a smaller estimation error than those based on the DP prior. In certain settings, the new estimator can also beat Stein's estimator, Efron and Morris's limited‐translation estimator, and many other existing empirical Bayes estimators. The Canadian Journal of Statistics 40: 328–344; 2012 © 2012 Statistical Society of Canada  相似文献   

18.
Summary.  In longitudinal studies, missingness of data is often an unavoidable problem. Estimators from the linear mixed effects model assume that missing data are missing at random. However, estimators are biased when this assumption is not met. In the paper, theoretical results for the asymptotic bias are established under non-ignorable drop-out, drop-in and other missing data patterns. The asymptotic bias is large when the drop-out subjects have only one or no observation, especially for slope-related parameters of the linear mixed effects model. In the drop-in case, intercept-related parameter estimators show substantial asymptotic bias when subjects enter late in the study. Eight other missing data patterns are considered and these produce asymptotic biases of a variety of magnitudes.  相似文献   

19.
The authors develop a Markov model for the analysis of longitudinal categorical data which facilitates modelling both marginal and conditional structures. A likelihood formulation is employed for inference, so the resulting estimators enjoy the optimal properties such as efficiency and consistency, and remain consistent when data are missing at random. Simulation studies demonstrate that the proposed method performs well under a variety of situations. Application to data from a smoking prevention study illustrates the utility of the model and interpretation of covariate effects. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

20.
In many applications of generalized linear mixed models to clustered correlated or longitudinal data, often we are interested in testing whether a random effects variance component is zero. The usual asymptotic mixture of chi‐square distributions of the score statistic for testing constrained variance components does not necessarily hold. In this article, the author proposes and explores a parametric bootstrap test that appears to be valid based on its estimated level of significance under the null hypothesis. Results from a simulation study indicate that the bootstrap test has a level much closer to the nominal one while the asymptotic test is conservative, and is more powerful than the usual asymptotic score test based on a mixture of chi‐squares. The proposed bootstrap test is illustrated using two sets of real‐life data obtained from clinical trials. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号