首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, showers have been suspected to be an important source of indoor exposure to volatile organic compounds (VOC). The chloroform dose to an individual from showering was determined based on exhaled breath analysis. The postexposure chloroform breath concentration ranged from 6.0-21 micrograms/m3, while all corresponding background breath concentrations were less than 0.86 micrograms/m3. The internal dose from showering (inhalation plus dermal) was comparable to estimates of the dose from daily water ingestion. The risk associated with a single, 10-min shower was estimated to be 1.22 x 10(-4), while the estimated risk from daily ingestion of tap water ranged from 0.130 x 10(-4) to 1.80 x 10(-4) for 0.15 and 2.0 L, respectively. Since the estimates of chloroform risk from domestic water use for the three exposure routes--ingestion, inhalation, and dermal--are similar, all routes must be used to calculate the total risk when making policy decisions regarding the quality of the municipal water supply.  相似文献   

2.
In order to predict the exhaled breath concentration of chloroform in individuals exposed to chloroform while showering, an existing physiologically based pharmacokinetic (PB-PK) model was modified to include a multicompartment, PB-PK model for the skin and a completely mixed shower exposure model. The PB-PK model of the skin included the stratum corneum as the principal resistance to absorption and a viable epidermis which is in dynamic equilibrium with the skin microcirculation. This model was calibrated with measured exhaled breath concentrations of chloroform in individuals exposed while showering with and without dermal absorption. The calibration effort indicated that the expected value of skin-blood partitioning coefficient would be 1.2 when the degree of transfer of chloroform from shower water into shower air was 61%. The stratum corneum permeability coefficient for chloroform was estimated to be within the range of 0.16-0.36 cm/hr and the expected value was 0.2 cm/hr. The estimated ratio of the dermally and inhaled absorbed doses ranged between 0.6 and 2.2 and the expected value was 0.75. These results indicate that for the purposes of risk assessment for dermal exposure to chloroform, a simple steady-state model can be used to predict the degree of dermal absorption and that a reasonable value of skin permeability coefficient for chloroform used in this model would be 0.2 cm/hr. Further research should be conducted to compare the elimination of chloroform via exhaled breath when different exposure routes are being compared. The model results from this study suggest that multiple measurements of exhaled breath concentrations after exposure may be necessary when making comparisons of breath concentrations that involve different exposure routes.  相似文献   

3.
This study evaluates airborne concentrations of common trihalomethane (THM) compounds in bathrooms during showering and bathing in homes supplied with chlorinated tap water. Three homes in an urban area were selected, each having three bedrooms, a full bath, and approximately 1,000 square feet of living area. THMs were concurrently measured in tap water and air in the shower/bath enclosure and the bathroom vanity area using Summa canisters. Chloroform (TCM), bromodichloromethane (BDCM), and chlorodibromomethane (CDBM) were quantified using U.S. Environmental Protection Agency (EPA) Method TO-14. Air samples were collected prior to, during, and after the water-use event for 16 shower and 7 bath events. Flow rate and temperature were measured, but not controlled. The increase in average airborne concentration (+/- standard error) during showers (expressed as microg/m3 in shower enclosure or bathroom air per microg/L in water) was 3.3+/-0.4 for TCM, 1.8+/-0.3 for BDCM, and 0.5+/-0.1 for CDBM (n = 12), and during baths was 1.2+/-0.4 for TCM, 0.59+/-0.21 for BDCM, and 0.15+/-0.05 for CDBM (n = 4). The relative contribution of each chemical to the airborne concentrations was consistent for all shower and bath events, with apparent release of TCM > BDCM > CDBM. The results are therefore consistent with their relative concentration in tap water and their vapor pressures. When the shower findings for TCM are normalized for water concentration, flow rate, shower volume, and duration, the average exposure concentrations in these urban residences are about 30% lower than those reported by other investigators using EPA analytical methods. This difference is likely attributable primarily to greater air exchange rates in residential shower/bath stalls compared to more "airtight" laboratory shower chambers. This appears to be the first field study to thoroughly evaluate THM exposures from residential showers and baths, and can be used to validate previously published models of tap water volatile chemical transfer to indoor air.  相似文献   

4.
Estimates of dermal dose from exposures to toxic chemicals are typically derived using models that assume instantaneous establishment of steady-state dermal mass flux. However, dermal absorption theory indicates that this assumption is invalid for short-term exposures to volatile organic chemicals (VOCs). A generalized distributed parameter physiologically-based pharmacokinetic model (DP-PBPK), which describes unsteady state dermal mass flux via a partial differential equation (Fickian diffusion), has been developed for inhalation and dermal absorption of VOCs. In the present study, the DP-PBPK model has been parameterized for chloroform, and compared with two simpler PBPK models of chloroform. The latter are lumped parameter models, employing ordinary differential equations, that do not account for the dermal absorption time lag associated with the accumulation of permeant chemical in tissue represented by permeability coefficients. All three models were evaluated by comparing simulated post-exposure exhaled breath concentration profiles with measured concentrations following environmental chloroform exposures. The DP-PBPK model predicted a time-lag in the exhaled breath concentration profile, consistent with the experimental data. The DP-PBPK model also predicted significant volatilization of chloroform, for a simulated dermal exposure scenario. The end-exposure dermal dose predicted by the DP-PBPK model is similar to that predicted by the EPA recommended method for short-term exposures, and is significantly greater than the end-exposure dose predicted by the lumped parameter models. However, the net dermal dose predicted by the DP-PBPK model is substantially less than that predicted by the EPA method, due to the post-exposure volatilization predicted by the DP-PBPK model. Moreover, the net dermal dose of chloroform predicted by all three models was nearly the same, even though the lumped parameter models did not predict substantial volatilization.  相似文献   

5.
A two-step methodology is described to make a health-based determination for the bathing and showering use of the water from a private well contaminated with volatile organic chemicals. The chemical perchloroethylene (PERC) is utilized to illustrate the approach. First, a chemical-specific exposure model is used to predict the concentration of PERC in the shower air, shower water, and in the air above the bathtub. Second, a physiologically based pharmacokinetic (PBPK) model is used to predict the concentration of PERC delivered to the target tissue, the brain, since the focus is on neurological endpoints. The simulation exercise includes concurrent dermal and inhalation routes of exposure. A reference target tissue level (RTTL) in the brain is estimated using the PBPK model. A hazard index based on this benchmark guideline is used to make a regulatory determination for bathing and showering use of the contaminated water.  相似文献   

6.
Exposure to Chlorination By-Products from Hot Water Uses   总被引:2,自引:0,他引:2  
Exposures to chlorination by-products (CBP) within public water supplies are multiroute in water. Cold water is primarily used for ingestion while a mixture of cold water and hot water is used for showering, bathing others, dish washing, etc. These latter two activities result in inhalation and dermal exposure. Heating water was observed to change the concentration of various CBP. An increase in the trihalomethanes (THM) concentrations and a decrease in the haloacetonitriles and halopropanones concentration, though an initial rise in the concentration of dichloropropanone, were observed. The extent of the increase in the THM is dependent on the chlorine residual present. Therefore, estimates of total exposure to CBP from public water supplies need to consider any changes in their concentration with different water uses. The overall THM exposures calculated using the THM concentration in heated water were 50% higher than those calculated using the THM concentration present in cold water. The estimated lifetime cancer risk associated with exposure to THM in water during the shower is therefore underestimated by 50% if the concentration of THM in cold water is used in the risk assessment.  相似文献   

7.
《Risk analysis》2018,38(4):853-865
This work aims to assess the exposure to permethrin of the adult French population from available contamination measurements of outdoor air, indoor air, and settled dust. Priority is given to the assessment of chronic exposure, given the potential of permethrin to induce cancers and/or endocrine disorders. A statistical method was devised to calculate exposure to permethrin by different pathways (inhalation, indirect dust ingestion, and dermal contact). This method considers anthropometric parameters, the population's space–time budget, and recent methods for calculating dermal exposure. Considering the media of interest, our results pointed to house dust as the main environmental source of permethrin exposure, followed by indoor and outdoor air. Dermal contact and indirect dust ingestion may be more important exposure pathways than inhalation. A sensitivity analysis indicated that exposure estimates were mainly affected by variability within contamination data. This study is the first step in aggregated exposure and risk assessment due to pyrethroid exposure. Outdoor air, indoor air, and settled dust may constitute significant exposure sources, in addition to diet, which could be important. The next step entails assessing internal doses and estimating the proportion of each exposure source and pathway relative to internal exposure.  相似文献   

8.
The systemic uptake of chloroform from dilute aqueous solutions into live hairless rats under conditions simulating dermal environmental exposure was studied. Whole blood was sampled during a 30-min immersion of an animal within water containing a known concentration of chloroform and then for 5.5 h following its removal from the bath. The amount of chloroform systemically absorbed was determined by comparing the AUCs of the blood concentration vs. time plots from dermal exposure to that obtained after IV infusion (for a period of 30 min) of an aqueous solution containing a known amount of chloroform (positive control). Although dermal data implied two-compartment disposition characteristics, IV infusion data fit best to a three-compartment disposition. Linear pharmacokinetics was observed both by IV administration and percutaneous absorption at the dose levels studied. Chloroform was detected in the rat blood as early as 4 min following exposure. Our findings suggest that about 10.2 mg of chloroform was systemically absorbed after dermal exposure of a rat to an aqueous solution of 0.44 mg/ml. This amount is substantially higher than the predictions of mathematical risk-models put forth by some investigators. However, when expressed as the "effective" permeability coefficient ( K peff), close agreement was noticed between our value and those estimated by others using physiologically based pharmacokinetic (PBPK) models. Also, in terms of K peff, reasonable agreement existed between our and another investigator's past estimates of uptake based on depletion of bath level of chloroform and the actual uptake measured in our current experiments. The estimated onset of systemic entry seen here is entirely consistent with our estimate of how long it takes to establish the diffusion gradient across the stratum comeum based on tape stripping.  相似文献   

9.
The purpose of this article is to quantify the public health risk associated with inhalation of indoor airborne infection based on a probabilistic transmission dynamic modeling approach. We used the Wells-Riley mathematical model to estimate (1) the CO2 exposure concentrations in indoor environments where cases of inhalation airborne infection occurred based on reported epidemiological data and epidemic curves for influenza and severe acute respiratory syndrome (SARS), (2) the basic reproductive number, R0 (i.e., expected number of secondary cases on the introduction of a single infected individual in a completely susceptible population) and its variability in a shared indoor airspace, and (3) the risk for infection in various scenarios of exposure in a susceptible population for a range of R0. We also employ a standard susceptible-infectious-recovered (SIR) structure to relate Wells-Riley model derived R0 to a transmission parameter to implicate the relationships between indoor carbon dioxide concentration and contact rate. We estimate that a single case of SARS will infect 2.6 secondary cases on average in a population from nosocomial transmission, whereas less than 1 secondary infection was generated per case among school children. We also obtained an estimate of the basic reproductive number for influenza in a commercial airliner: the median value is 10.4. We suggest that improving the building air cleaning rate to lower the critical rebreathed fraction of indoor air can decrease transmission rate. Here, we show that virulence of the organism factors, infectious quantum generation rates (quanta/s by an infected person), and host factors determine the risk for inhalation of indoor airborne infection.  相似文献   

10.
Multistage modeling incorporating a time-dependent exposure pattern is applied to lung cancer mortality data obtained from a cohort of 2802 arsenic-exposed copper-smelter workers who worked 1 or more years during the period 1940-1964 at a copper smelter at Tacoma, Washington. The workers were followed for death through 1976. There were 100 deaths due to lung cancer during the follow-up period. Exposures to air arsenic levels measured in micrograms/m3 were estimated from departmental air arsenic and workers urinary arsenic measurements. Relationships of different temporal variables with excess death rates are examined to judge qualitatively the implications of the multistage cancer process. Analysis to date indicates a late stage effect of arsenic although an additional early stage effect cannot be ruled out.  相似文献   

11.
Physiological daily inhalation rates reported in our previous study for normal‐weight subjects 2.6–96 years old were compared to inhalation data determined in free‐living overweight/obese individuals (n = 661) aged 5–96 years. Inhalation rates were also calculated in normal‐weight (n = 408), overweight (n = 225), and obese classes 1, 2, and 3 adults (n = 134) aged 20–96 years. These inhalation values were based on published indirect calorimetry measurements (n = 1,069) and disappearance rates of oral doses of water isotopes (i.e., 2H2O and H218O) monitored by gas isotope ratio mass spectrometry usually in urine samples for an aggregate period of over 16,000 days. Ventilatory equivalents for overweight/obese subjects at rest and during their aggregate daytime activities (28.99 ± 6.03 L to 34.82 ± 8.22 L of air inhaled/L of oxygen consumed; mean ±  SD) were determined and used for calculations of inhalation rates. The interindividual variability factor calculated as the ratio of the highest 99th percentile to the lowest 1st percentile of daily inhalation rates is higher for absolute data expressed in m3/day (26.7) compared to those of data in m3/kg‐day (12.2) and m3/m2‐day (5.9). Higher absolute rates generally found in overweight/obese individuals compared to their normal‐weight counterparts suggest higher intakes of air pollutants (in μg/day) for the former compared to the latter during identical exposure concentrations and conditions. Highest absolute mean (24.57 m3/day) and 99th percentile (55.55 m3/day) values were found in obese class 2 adults. They inhale on average 8.21 m3 more air per day than normal‐weight adults.  相似文献   

12.
Tetrachloroethylene (PCE) is a commonly used organic solvent and a suspected human carcinogen, reportedly transferred to human breast milk following inhalation exposure. Transfer of PCE to milk may represent a threat to the nursing infant. A physiologically based pharmacokinetic (PBPK) model was developed to quantitatively assess the transfer of inhaled PCE into breast milk and the consequent exposure of the nursing infant. The model was validated in lactating rats. Lactating Sprague-Dawley female rats were exposed via inhalation to PCE at concentrations ranging from 20-1000 ppm, and then returned to their nursing, 10- to 11-day-old pups. Tetrachloroethylene concentrations in the air, blood, milk, and tissue were determined by gas chromatography and compared to model predictions. The model described the distribution of inhaled PCE in maternal blood and milk, as well as the nursed pup's gastrointestinal tract, blood, and tissue. Several computer simulations of PCE distribution kinetics in exhaled air, blood, and milk of exposed human subjects were run and compared with limited human data available from the literature. It is concluded that the PBPK model successfully described the concentration of PCE in both lactating rats and humans. Although predictions vs. observations were good, the model slightly underpredicted the peak whole pup PCE concentration and underpredicted systemic clearance of PCE from the pup.  相似文献   

13.
In the days following the collapse of the World Trade Center (WTC) towers on September 11, 2001 (9/11), the U.S. Environmental Protection Agency (EPA) initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these data, EPA conducted an inhalation exposure and human health risk assessment to the general population. This assessment does not address exposures and potential impacts that could have occurred to rescue workers, firefighters, and other site workers, nor does it address exposures that could have occurred in the indoor environment. Contaminants evaluated include particulate matter (PM), metals, polychlorinated biphenyls, dioxins, asbestos, volatile organic compounds, particle-bound polycyclic aromatic hydrocarbons, silica, and synthetic vitreous fibers (SVFs). This evaluation yielded three principal findings. (1) Persons exposed to extremely high levels of ambient PM and its components, SVFs, and other contaminants during the collapse of the WTC towers, and for several hours afterward, were likely to be at risk for acute and potentially chronic respiratory effects. (2) Available data suggest that contaminant concentrations within and near ground zero (GZ) remained significantly elevated above background levels for a few days after 9/11. Because only limited data on these critical few days were available, exposures and potential health impacts could not be evaluated with certainty for this time period. (3) Except for inhalation exposures that may have occurred on 9/11 and a few days afterward, the ambient air concentration data suggest that persons in the general population were unlikely to suffer short-term or long-term adverse health effects caused by inhalation exposures. While this analysis by EPA evaluated the potential for health impacts based on measured air concentrations, epidemiological studies conducted by organizations other than EPA have attempted to identify actual impacts. Such studies have identified respiratory effects in worker and general populations, and developmental effects in newborns whose mothers were near GZ on 9/11 or shortly thereafter. While researchers are not able to identify specific times and even exactly which contaminants are the cause of these effects, they have nonetheless concluded that exposure to WTC contaminants (and/or maternal stress, in the case of developmental effects) resulted in these effects, and have identified the time period including 9/11 itself and the days and few weeks afterward as a period of most concern based on high concentrations of key pollutants in the air and dust.  相似文献   

14.
We employ the intake fraction (iF) as an effective tool for expressing the source-to-intake relationship for pollutant emissions in life cycle analysis (LCA) or comparative risk assessment. Intake fraction is the fraction of chemical mass emitted into the environment that eventually passes into a member of the population through inhalation, ingestion, or dermal exposure. To date, this concept has been primarily applied to pollutants whose primary route of exposure is inhalation. Here we extend the use of iF to multimedia pollutants with multiple exposure pathways. We use a level III multimedia model to calculate iF for TCDD and compare the result to one calculated from measured levels of dioxin toxic equivalents in the environment. We calculate iF for emissions to air and surface water for 308 chemicals. We correlate the primary exposure route with the magnitudes of the octanol-water partition coefficient, Kow, and of the air-water partitioning coefficient (dimensionless Henry constant), Kaw. This results in value ranges of Kow and Kaw where the chemical exposure route can be classified with limited input data requirements as primarily inhalation, primarily ingestion, or multipathway. For the inhalation and ingestion dominant pollutants, we also define empirical relationships based on chemical properties for quantifying the intake fraction. The empirical relationships facilitate rapid evaluation of many chemicals in terms of the intake. By defining a theoretical upper limit for iF in a multimedia environment we find that iF calculations provide insight into the multimedia model algorithms and help identify unusual patterns of exposure and questionable exposure model results.  相似文献   

15.
A screening approach is developed for volatile organic compounds (VOCs) to estimate exposures that correspond to levels measured in fluids and/or tissues in human biomonitoring studies. The approach makes use of a generic physiologically-based pharmacokinetic (PBPK) model coupled with exposure pattern characterization, Monte Carlo analysis, and quantitative structure property relationships (QSPRs). QSPRs are used for VOCs with minimal data to develop chemical-specific parameters needed for the PBPK model. The PBPK model is capable of simulating VOC kinetics following multiple routes of exposure, such as oral exposure via water ingestion and inhalation exposure during shower events. Using published human biomonitoring data of trichloroethylene (TCE), the generic model is evaluated to determine how well it estimates TCE concentrations in blood based on the known drinking water concentrations. In addition, Monte Carlo analysis is conducted to characterize the impact of the following factors: (1) uncertainties in the QSPR-estimated chemical-specific parameters; (2) variability in physiological parameters; and (3) variability in exposure patterns. The results indicate that uncertainty in chemical-specific parameters makes only a minor contribution to the overall variability and uncertainty in the predicted TCE concentrations in blood. The model is used in a reverse dosimetry approach to derive estimates of TCE concentrations in drinking water based on given measurements of TCE in blood, for comparison to the U.S. EPA's Maximum Contaminant Level in drinking water. This example demonstrates how a reverse dosimetry approach can be used to facilitate interpretation of human biomonitoring data in a health risk context by deriving external exposures that are consistent with a biomonitoring data set, thereby permitting comparison with health-based exposure guidelines.  相似文献   

16.
Human exposure to halons and halon replacement chemicals is often regulated on the basis of cardiac sensitization potential. The dose-response data obtained from animal testing are used to determine the no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL) values. This approach alone does not provide the information necessary to evaluate the cardiac sensitization potential for the chemical of interest under a variety of exposure concentrations and durations. In order to provide a tool for decision-makers and regulators tasked with setting exposure guidelines for halon replacement chemicals, a quantitative approach was established which allowed exposures to be assessed in terms of the chemical concentrations in blood during the exposure. A physiologically-based pharmacokinetic (PBPK) model was used to simulate blood concentrations of Halon 1301 (bromotrifluoromethane, CF3Br), HFC-125 (pentafluoroethane, CHF2CF3), HFC-227ea (heptafluoropropane, CF3CHFCF3), HCFC-123 (dichlorotrifluoroethane, CHCl2CF3), and CF3I (trifluoroiodomethane) during inhalation exposures. This work demonstrates a quantitative approach for use in linking chemical inhalation exposures to the levels of chemical in blood achieved during the exposure.  相似文献   

17.
It has been shown that bathroom-type water uses dominate personal exposure to water-borne contaminants in the home. Therefore, in assessing exposure of specific population groups to the contaminants in the water, understanding population water-use behavior for bathroom activities as a function of demographic characteristics is vital to realistic exposure estimates. In this article, shower and bath frequencies and durations are analyzed, presented, and compared for various demographic groups derived from analyses of the National Human Activities Pattern Survey (NHAPS) database and the Residential End Uses of Water Study (REUWS) database as well as from a review of current literature. Analysis showed that age and level of education significantly influenced shower and bath frequency and duration. The frequency of showering and bathing reported in NHAPS agreed reasonably well with previous studies; however, durations of these events were found to be significantly longer. Showering frequency reported in REUWS was slightly less than that reported for NHAPS; however, durations of showers reported in REUWS are consistent with other studies. After considering the strengths and weaknesses of each data set and comparing their results to previous studies, it is concluded that NHAPS provides more reliable frequency data, while REUWS provides more reliable duration data. The shower- and bath-use behavior parameters recommended in this article can aid modelers in appropriately specifying water-use behavior as a function of demographic group in order to conduct reasonable assessments of exposure to contaminants that enter the home via the water supply.  相似文献   

18.
19.
Chloroform is a carcinogen in rodents and its carcinogenicity is secondary to events associated with cytotoxicity and regenerative cell proliferation. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that links the processes of chloroform metabolism, reparable cell damage, cell death, and regenerative cellular proliferation was developed to support a new cancer dose-response assessment for chloroform. Model parameters were estimated using Markov Chain Monte Carlo (MCMC) analysis in a two-step approach: (1) metabolism parameters for male and female mice and rats were estimated against available closed chamber gas uptake data; and (2) PD parameters for each of the four rodent groups were estimated from hepatic and renal labeling index data following inhalation exposures. Subsequently, the resulting rodent PD parameters together with literature values for human age-dependent physiological and metabolism parameters were used to scale up the rodent model to a human model. The human model was used to predict exposure conditions under which chloroform-mediated cytolethality is expected to occur in liver and kidney of adults and children. Using the human model, inhalation Reference Concentrations (RfCs) and oral Reference Doses (RfDs) were derived using an uncertainty factor of 10. Based on liver and kidney dose metrics, the respective RfCs were 0.9 and 0.09 ppm; and the respective RfDs were 0.4 and 3 mg/kg/day.  相似文献   

20.
The relative contribution of four influenza virus exposure pathways—(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes—must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 106 mL−1, pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 106 mL−1, pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号