首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract. Lasso and other regularization procedures are attractive methods for variable selection, subject to a proper choice of shrinkage parameter. Given a set of potential subsets produced by a regularization algorithm, a consistent model selection criterion is proposed to select the best one among this preselected set. The approach leads to a fast and efficient procedure for variable selection, especially in high‐dimensional settings. Model selection consistency of the suggested criterion is proven when the number of covariates d is fixed. Simulation studies suggest that the criterion still enjoys model selection consistency when d is much larger than the sample size. The simulations also show that our approach for variable selection works surprisingly well in comparison with existing competitors. The method is also applied to a real data set.  相似文献   

2.
Variable selection is an effective methodology for dealing with models with numerous covariates. We consider the methods of variable selection for semiparametric Cox proportional hazards model under the progressive Type-II censoring scheme. The Cox proportional hazards model is used to model the influence coefficients of the environmental covariates. By applying Breslow’s “least information” idea, we obtain a profile likelihood function to estimate the coefficients. Lasso-type penalized profile likelihood estimation as well as stepwise variable selection method are explored as means to find the important covariates. Numerical simulations are conducted and Veteran’s Administration Lung Cancer data are exploited to evaluate the performance of the proposed method.  相似文献   

3.
There are several procedures for fitting generalized additive models, i.e. regression models for an exponential family response where the influence of each single covariates is assumed to have unknown, potentially non-linear shape. Simulated data are used to compare a smoothing parameter optimization approach for selection of smoothness and of covariates, a stepwise approach, a mixed model approach, and a procedure based on boosting techniques. In particular it is investigated how the performance of procedures is linked to amount of information, type of response, total number of covariates, number of influential covariates, and extent of non-linearity. Measures for comparison are prediction performance, identification of influential covariates, and smoothness of fitted functions. One result is that the mixed model approach returns sparse fits with frequently over-smoothed functions, while the functions are less smooth for the boosting approach and variable selection is less strict. The other approaches are in between with respect to these measures. The boosting procedure is seen to perform very well when little information is available and/or when a large number of covariates is to be investigated. It is somewhat surprising that in scenarios with low information the fitting of a linear model, even with stepwise variable selection, has not much advantage over the fitting of an additive model when the true underlying structure is linear. In cases with more information the prediction performance of all procedures is very similar. So, in difficult data situations the boosting approach can be recommended, in others the procedures can be chosen conditional on the aim of the analysis.  相似文献   

4.
We study the variable selection problem for a class of generalized linear models with endogenous covariates. Based on the instrumental variable adjustment technology and the smooth-threshold estimating equation (SEE) method, we propose an instrumental variable based variable selection procedure. The proposed variable selection method can attenuate the effect of endogeneity in covariates, and is easy for application in practice. Some theoretical results are also derived such as the consistency of the proposed variable selection procedure and the convergence rate of the resulting estimator. Further, some simulation studies and a real data analysis are conducted to evaluate the performance of the proposed method, and simulation results show that the proposed method is workable.  相似文献   

5.
High-dimensional data with a group structure of variables arise always in many contemporary statistical modelling problems. Heavy-tailed errors or outliers in the response often exist in these data. We consider robust group selection for partially linear models when the number of covariates can be larger than the sample size. The non-convex penalty function is applied to achieve both goals of variable selection and estimation in the linear part simultaneously, and we use polynomial splines to estimate the nonparametric component. Under regular conditions, we show that the robust estimator enjoys the oracle property. Simulation studies demonstrate the performance of the proposed method with samples of moderate size. The analysis of a real example illustrates that our method works well.  相似文献   

6.
We introduce a fully model-based approach of studying functional relationships between a multivariate circular-dependent variable and several circular covariates, enabling inference regarding all model parameters and related prediction. Two multiple circular regression models are presented for this approach. First, for an univariate circular-dependent variable, we propose the least circular mean-square error (LCMSE) estimation method, and asymptotic properties of the LCMSE estimators and inferential methods are developed and illustrated. Second, using a simulation study, we provide some practical suggestions for model selection between the two models. An illustrative example is given using a real data set from protein structure prediction problem. Finally, a straightforward extension to the case with a multivariate-dependent circular variable is provided.  相似文献   

7.
ABSTRACT

In this paper, we study a novelly robust variable selection and parametric component identification simultaneously in varying coefficient models. The proposed estimator is based on spline approximation and two smoothly clipped absolute deviation (SCAD) penalties through rank regression, which is robust with respect to heavy-tailed errors or outliers in the response. Furthermore, when the tuning parameter is chosen by modified BIC criterion, we show that the proposed procedure is consistent both in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate under some assumptions, and the estimators of constant coefficients have the same asymptotic distribution as their counterparts obtained when the true model is known. Simulation studies and a real data example are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

8.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

9.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

10.
In this article, we develop a robust variable selection procedure jointly for fixed and random effects in linear mixed models for longitudinal data. We propose a penalized robust estimator for both the regression coefficients and the variance of random effects based on a re-parametrization of the linear mixed models. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection method. Simulation study shows the robustness of the proposed method against outliers. In the end, the proposed methods is illustrated in the analysis of a real data set.  相似文献   

11.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

12.
We consider a linear regression model where there are group structures in covariates. The group LASSO has been proposed for group variable selections. Many nonconvex penalties such as smoothly clipped absolute deviation and minimax concave penalty were extended to group variable selection problems. The group coordinate descent (GCD) algorithm is used popularly for fitting these models. However, the GCD algorithms are hard to be applied to nonconvex group penalties due to computational complexity unless the design matrix is orthogonal. In this paper, we propose an efficient optimization algorithm for nonconvex group penalties by combining the concave convex procedure and the group LASSO algorithm. We also extend the proposed algorithm for generalized linear models. We evaluate numerical efficiency of the proposed algorithm compared to existing GCD algorithms through simulated data and real data sets.  相似文献   

13.
A fully nonparametric model may not perform well or when the researcher wants to use a parametric model but the functional form with respect to a subset of the regressors or the density of the errors is not known. This becomes even more challenging when the data contain gross outliers or unusual observations. However, in practice the true covariates are not known in advance, nor is the smoothness of the functional form. A robust model selection approach through which we can choose the relevant covariates components and estimate the smoothing function may represent an appealing tool to the solution. A weighted signed-rank estimation and variable selection under the adaptive lasso for semi-parametric partial additive models is considered in this paper. B-spline is used to estimate the unknown additive nonparametric function. It is shown that despite using B-spline to estimate the unknown additive nonparametric function, the proposed estimator has an oracle property. The robustness of the weighted signed-rank approach for data with heavy-tail, contaminated errors, and data containing high-leverage points are validated via finite sample simulations. A practical application to an economic study is provided using an updated Canadian household gasoline consumption data.  相似文献   

14.
In this article, we develop a Bayesian variable selection method that concerns selection of covariates in the Poisson change-point regression model with both discrete and continuous candidate covariates. Ranging from a null model with no selected covariates to a full model including all covariates, the Bayesian variable selection method searches the entire model space, estimates posterior inclusion probabilities of covariates, and obtains model averaged estimates on coefficients to covariates, while simultaneously estimating a time-varying baseline rate due to change-points. For posterior computation, the Metropolis-Hastings within partially collapsed Gibbs sampler is developed to efficiently fit the Poisson change-point regression model with variable selection. We illustrate the proposed method using simulated and real datasets.  相似文献   

15.
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore approaches, for variable selection and estimation in sparse and high-dimensional additive hazards regression models. When the number of covariates grows with the sample size, we establish asymptotic properties of the resulting estimator and the oracle property of the proposed method. It is shown that the proposed estimator is more efficient than that obtained from the non-concave penalized likelihood approach in the literature. Based on a penalized empirical likelihood ratio statistic, we further develop a nonparametric likelihood approach for testing the linear hypothesis of regression coefficients and constructing confidence regions consequently. Simulation studies are carried out to evaluate the performance of the proposed methodology and also two real data sets are analyzed.  相似文献   

16.
When confronted with multiple covariates and a response variable, analysts sometimes apply a variable‐selection algorithm to the covariate‐response data to identify a subset of covariates potentially associated with the response, and then wish to make inferences about parameters in a model for the marginal association between the selected covariates and the response. If an independent data set were available, the parameters of interest could be estimated by using standard inference methods to fit the postulated marginal model to the independent data set. However, when applied to the same data set used by the variable selector, standard (“naive”) methods can lead to distorted inferences. The authors develop testing and interval estimation methods for parameters reflecting the marginal association between the selected covariates and response variable, based on the same data set used for variable selection. They provide theoretical justification for the proposed methods, present results to guide their implementation, and use simulations to assess and compare their performance to a sample‐splitting approach. The methods are illustrated with data from a recent AIDS study. The Canadian Journal of Statistics 37: 625–644; 2009 © 2009 Statistical Society of Canada  相似文献   

17.
Semiparametric regression models with multiple covariates are commonly encountered. When there are covariates not associated with response variable, variable selection may lead to sparser models, more lucid interpretations and more accurate estimation. In this study, we adopt a sieve approach for the estimation of nonparametric covariate effects in semiparametric regression models. We adopt a two-step iterated penalization approach for variable selection. In the first step, a mixture of the Lasso and group Lasso penalties are employed to conduct the first-round variable selection and obtain the initial estimate. In the second step, a mixture of the weighted Lasso and weighted group Lasso penalties, with weights constructed using the initial estimate, are employed for variable selection. We show that the proposed iterated approach has the variable selection consistency property, even when number of unknown parameters diverges with sample size. Numerical studies, including simulation and analysis of a diabetes dataset, show satisfactory performance of the proposed approach.  相似文献   

18.
Case‐cohort design has been demonstrated to be an economical and efficient approach in large cohort studies when the measurement of some covariates on all individuals is expensive. Various methods have been proposed for case‐cohort data when the dimension of covariates is smaller than sample size. However, limited work has been done for high‐dimensional case‐cohort data which are frequently collected in large epidemiological studies. In this paper, we propose a variable screening method for ultrahigh‐dimensional case‐cohort data under the framework of proportional model, which allows the covariate dimension increases with sample size at exponential rate. Our procedure enjoys the sure screening property and the ranking consistency under some mild regularity conditions. We further extend this method to an iterative version to handle the scenarios where some covariates are jointly important but are marginally unrelated or weakly correlated to the response. The finite sample performance of the proposed procedure is evaluated via both simulation studies and an application to a real data from the breast cancer study.  相似文献   

19.
20.
Abstract

In this article, we propose a new penalized-likelihood method to conduct model selection for finite mixture of regression models. The penalties are imposed on mixing proportions and regression coefficients, and hence order selection of the mixture and the variable selection in each component can be simultaneously conducted. The consistency of order selection and the consistency of variable selection are investigated. A modified EM algorithm is proposed to maximize the penalized log-likelihood function. Numerical simulations are conducted to demonstrate the finite sample performance of the estimation procedure. The proposed methodology is further illustrated via real data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号