首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we consider three distribution-free confidence intervals for quantiles given joint records from two independent sequences of continuous random variables with a common continuous distribution function. The coverage probabilities of these intervals are compared. We then compute the universal bounds of the expected widths of the proposed confidence intervals. These results naturally extend to any number of independent sequences instead of just two. Finally, the proposed confidence intervals are applied for a real data set to illustrate the practical usefulness of the procedures developed here.  相似文献   

2.
What is the interpretation of a confidence interval following estimation of a Box-Cox transformation parameter λ? Several authors have argued that confidence intervals for linear model parameters ψ can be constructed as if λ. were known in advance, rather than estimated, provided the estimand is interpreted conditionally given $\hat \lambda$. If the estimand is defined as $\psi \left( {\hat \lambda } \right)$, a function of the estimated transformation, can the nominal confidence level be regarded as a conditional coverage probability given $\hat \lambda$, where the interval is random and the estimand is fixed? Or should it be regarded as an unconditional probability, where both the interval and the estimand are random? This article investigates these questions via large-n approximations, small- σ approximations, and simulations. It is shown that, when model assumptions are satisfied and n is large, the nominal confidence level closely approximates the conditional coverage probability. When n is small, this conditional approximation is still good for regression models with small error variance. The conditional approximation can be poor for regression models with moderate error variance and single-factor ANOVA models with small to moderate error variance. In these situations the nominal confidence level still provides a good approximation for the unconditional coverage probability. This suggests that, while the estimand may be interpreted conditionally, the confidence level should sometimes be interpreted unconditionally.  相似文献   

3.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

4.
The problems of estimating the mean and an upper percentile of a lognormal population with nonnegative values are considered. For estimating the mean of a such population based on data that include zeros, a simple confidence interval (CI) that is obtained by modifying Tian's [Inferences on the mean of zero-inflated lognormal data: the generalized variable approach. Stat Med. 2005;24:3223—3232] generalized CI, is proposed. A fiducial upper confidence limit (UCL) and a closed-form approximate UCL for an upper percentile are developed. Our simulation studies indicate that the proposed methods are very satisfactory in terms of coverage probability and precision, and better than existing methods for maintaining balanced tail error rates. The proposed CI and the UCL are simple and easy to calculate. All the methods considered are illustrated using samples of data involving airborne chlorine concentrations and data on diagnostic test costs.  相似文献   

5.
When working with a single random variable, the simplest and most obvious approach when estimating a 1???γ prediction interval, is to estimate the γ/2 and 1???γ/2 quantiles. The paper compares the small-sample properties of several methods aimed at estimating an interval that contains the 1???γ prediction interval with probability 1???α. In effect, the goal is to compute a 1???α confidence interval for the true 1???γ prediction interval. The only successful method when the sample size is small is based in part on an adaptive kernel estimate of the underlying density. Some simulation results are reported on how an extension to non-parametric regression performs, based on a so-called running interval smoother.  相似文献   

6.
Hsiuying Wang 《Statistics》2013,47(2):327-343
Setting confidence bounds or intervals for a parameter in a restricted parameter space is an important issue in applications and is widely discussed in the recent literature. In this article, we focus on the distributions in the exponential families, and propose general forms of the truncated Pratt interval and rp interval for the means. We take the Poisson distribution as an example to illustrate the method and compare it with the other existing intervals. Besides possessing the merits from the theoretical inferences, the proposed intervals are also shown to be competitive approaches from simulation and real-data application studies.  相似文献   

7.
This paper considers the largest and smallest observations at the times when a new record of either kind (upper or lower) occurs. These are called the upper and lower current records and are denoted by ${R^l_m}$ and ${R^s_m}$ , respectively. The interval ${(R^s_m,R^l_m)}$ is then referred to as the record coverage. The prediction problem in the two-sample case is then discussed and, specifically, the exact outer and inner prediction intervals are derived for order statistics intervals from an independent future Y-sample based on the m-th record coverage from the X-sequence when the underlying distribution of the two samples are the same. The coverage probabilities of these intervals are exact and do not depend on the underlying distribution. Distribution-free prediction intervals as well as upper and lower prediction limits for spacings from a future Y-sample are obtained in terms of the record range from the X-sequence.  相似文献   

8.
For a normal distribution with known variance, the standard confidence interval of the location parameter is derived from the classical Neyman procedure. When the parameter space is known to be restricted, the standard confidence interval is arguably unsatisfactory. Recent articles have addressed this problem and proposed confidence intervals for the mean of a normal distribution where the parameter space is not less than zero. In this article, we propose a new confidence interval, rp interval, and derive the Bayesian credible interval and likelihood ratio interval for general restricted parameter space. We compare these intervals with the standard interval and the minimax interval. Simulation studies are undertaken to assess the performances of these confidence intervals.  相似文献   

9.
The robustness of confidence intervals for a scale parameter based on M-esimators is studied, especially in small size samples. The coverage probablity is used as measure of robustness. A theorem for a lower bound of the minimum coverage probability of M-estimators is presented and it is applied in order to examine the behavior of the standard deviation and the median absolute deviation, as interval estimators. This bound can confirm the robustness of any other scale M-estimator in interval estimation. The idea of stretching is used to formulate the family of distributions that are considered as underlying. Critical values for the confidence interval are computed where it is needed, that is for the median absolute deviation in the Normal, Uniform and Cauchy distribution and for the standard deviation in the Uniform and Cauchy distribution. Simulation results have been achieved for the estimation of the coverage probabilities and the critical values.  相似文献   

10.
This paper considered several confidence intervals for estimating the population signal-to-noise ratio based on parametric, non-parametric and modified methods. A simulation study has been conducted to compare the performance of the interval estimators under both symmetric and skewed distributions. We reported coverage probability and average width of the interval estimators. Based on the simulation study, we observed that some of our proposed interval estimators are performing better in the sense of smaller width and coverage probability and have been recommended for the researchers.  相似文献   

11.
Exact nonparametric inference based on ordinary Type-II right censored samples has been extended here to the situation when there are multiple samples with Type-II censoring from a common continuous distribution. It is shown that marginally, the order statistics from the pooled sample are mixtures of the usual order statistics with multivariate hypergeometric weights. Relevant formulas are then derived for the construction of nonparametric confidence intervals for population quantiles, prediction intervals, and tolerance intervals in terms of these pooled order statistics. It is also shown that this pooled-sample approach assists in achieving higher confidence levels when estimating large quantiles as compared to a single Type-II censored sample with same number of observations from a sample of comparable size. We also present some examples to illustrate all the methods of inference developed here.  相似文献   

12.
In this paper, we consider the problem of determining non-parametric confidence intervals for quantiles when available data are in the form of k-records. Distribution-free confidence intervals as well as lower and upper confidence limits are derived for fixed quantiles of an arbitrary unknown distribution based on k-records of an independent and identically distributed sequence from that distribution. The construction of tolerance intervals and limits based on k-records is also discussed. An exact expression for the confidence coefficient of these intervals are derived. Some tables are also provided to assist in choosing the appropriate k-records for the construction of these confidence intervals and tolerance intervals. Some simulation results are presented to point out some of the features and properties of these intervals. Finally, the data, representing the records of the amount of annual rainfall in inches recorded at Los Angeles Civic Center, are used to illustrate all the results developed in this paper and also to demonstrate the improvements that they provide on those based on either the usual records or the current records.  相似文献   

13.
In this paper we consider the problem of constructing confidence intervals for nonparametric quantile regression with an emphasis on smoothing splines. The mean‐based approaches for smoothing splines of Wahba (1983) and Nychka (1988) may not be efficient for constructing confidence intervals for the underlying function when the observed data are non‐Gaussian distributed, for instance if they are skewed or heavy‐tailed. This paper proposes a method of constructing confidence intervals for the unknown τth quantile function (0<τ<1) based on smoothing splines. In this paper we investigate the extent to which the proposed estimator provides the desired coverage probability. In addition, an improvement based on a local smoothing parameter that provides more uniform pointwise coverage is developed. The results from numerical studies including a simulation study and real data analysis demonstrate the promising empirical properties of the proposed approach.  相似文献   

14.
In this paper we consider confidence intervals for the ratio of two population variances. We propose a confidence interval for the ratio of two variances based on the t-statistic by deriving its Edgeworth expansion and considering Hall's and Johnson's transformations. Then, we consider the coverage accuracy of suggested intervals and intervals based on the F-statistic for some distributions.  相似文献   

15.
The standard approach to construct nonparametric tolerance intervals is to use the appropriate order statistics, provided a minimum sample size requirement is met. However, it is well-known that this traditional approach is conservative with respect to the nominal level. One way to improve the coverage probabilities is to use interpolation. However, the extension to the case of two-sided tolerance intervals, as well as for the case when the minimum sample size requirement is not met, have not been studied. In this paper, an approach using linear interpolation is proposed for improving coverage probabilities for the two-sided setting. In the case when the minimum sample size requirement is not met, coverage probabilities are shown to improve by using linear extrapolation. A discussion about the effect on coverage probabilities and expected lengths when transforming the data is also presented. The applicability of this approach is demonstrated using three real data sets.  相似文献   

16.
In a ground-breaking paper published in 1990 by the Journal of the Royal Statistical Society, J.R.M. Hosking defined the L-moment of a random variable as an expectation of certain linear combinations of order statistics. L-moments are an alternative to conventional moments and recently they have been used often in inferential statistics. L-moments have several advantages over the conventional moments, including robustness to the the presence of outliers, which may lead to more accurate estimates in some cases as the characteristics of distributions. In this contribution, asymptotic theory and L-moments are used to derive confidence intervals of the population parameters and quantiles of the three-parametric generalized Pareto and extreme-value distributions. Computer simulations are performed to determine the performance of confidence intervals for the population quantiles based on L-moments and to compare them to those obtained by traditional estimation techniques. The results obtained show that they perform well in comparison to the moments and maximum likelihood methods when the interest is in higher quantiles, or even best. L-moments are especially recommended when the tail of the distribution is rather heavier and the sample size is small. The derived intervals are applied to real economic data, and specifically to market-opening asset prices.  相似文献   

17.
This paper uses graphical methods to illustrate and compare the coverage properties of a number of methods for calculating confidence intervals for the difference between two independent binomial proportions. We investigate both small‐sample and large‐sample properties of both two‐sided and one‐sided coverage, with an emphasis on asymptotic methods. In terms of aligning the smoothed coverage probability surface with the nominal confidence level, we find that the score‐based methods on the whole have the best two‐sided coverage, although they have slight deficiencies for confidence levels of 90% or lower. For an easily taught, hand‐calculated method, the Brown‐Li ‘Jeffreys’ method appears to perform reasonably well, and in most situations, it has better one‐sided coverage than the widely recommended alternatives. In general, we find that the one‐sided properties of many of the available methods are surprisingly poor. In fact, almost none of the existing asymptotic methods achieve equal coverage on both sides of the interval, even with large sample sizes, and consequently if used as a non‐inferiority test, the type I error rate (which is equal to the one‐sided non‐coverage probability) can be inflated. The only exception is the Gart‐Nam ‘skewness‐corrected’ method, which we express using modified notation in order to include a bias correction for improved small‐sample performance, and an optional continuity correction for those seeking more conservative coverage. Using a weighted average of two complementary methods, we also define a new hybrid method that almost matches the performance of the Gart‐Nam interval. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Confidence Intervals Based on Local Linear Smoother   总被引:1,自引:0,他引:1  
Point-wise confidence intervals for a non-parametric regression function in conjunction with the popular local linear smoother are considered. The confidence intervals are based on the asymptotic normal distribution of the local linear smoother. Their coverage accuracy is evaluated by developing Edgeworth expansion for the coverage probability. It is found that the coverage error near the boundary of the support of the regression function is of a larger order than that in the interior, which implies that the local linear smoother is not adaptive to the boundary in terms of coverage. This is quite unexpected as the local linear smoother is adaptive to the boundary in terms of the mean squared error.  相似文献   

19.
A range of instrumental and proxy temperature records are examined semi-parametrically, using empirical densities and quantile autoregressions containing a unit root, to assess the extent of non-stationarity and the presence of global warming trends. Only the instrumental records covering the last century and a half show any evidence of non-stationarity, but the trend behaviour of these series remains elusive.  相似文献   

20.
Confidence interval is a basic type of interval estimation in statistics. When dealing with samples from a normal population with the unknown mean and the variance, the traditional method to construct t-based confidence intervals for the mean parameter is to treat the n sampled units as n groups and build the intervals. Here we propose a generalized method. We first divide them into several equal-sized groups and then calculate the confidence intervals with the mean values of these groups. If we define “better” in terms of the expected length of the confidence interval, then the first method is better because the expected length of the confidence interval obtained from the first method is shorter. We prove this intuition theoretically. We also specify when the elements in each group are correlated, the first method is invalid, while the second can give us correct results in terms of the coverage probability. We illustrate this with analytical expressions. In practice, when the data set is extremely large and distributed in several data centers, the second method is a good tool to get confidence intervals, in both independent and correlated cases. Some simulations and real data analyses are presented to verify our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号