首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multivariate regression model is considered with p regressors. A latent vector with p binary entries serves to identify one of two types of regression coefficients: those close to 0 and those not. Specializing our general distributional setting to the linear model with Gaussian errors and using natural conjugate prior distributions, we derive the marginal posterior distribution of the binary latent vector. Fast algorithms aid its direct computation, and in high dimensions these are supplemented by a Markov chain Monte Carlo approach to sampling from the known posterior distribution. Problems with hundreds of regressor variables become quite feasible. We give a simple method of assigning the hyperparameters of the prior distribution. The posterior predictive distribution is derived and the approach illustrated on compositional analysis of data involving three sugars with 160 near infrared absorbances as regressors.  相似文献   

2.
A robust rank-based estimator for variable selection in linear models, with grouped predictors, is studied. The proposed estimation procedure extends the existing rank-based variable selection [Johnson, B.A., and Peng, L. (2008), ‘Rank-based Variable Selection’, Journal of Nonparametric Statistics, 20(3):241–252] and the ww-scad [Wang, L., and Li, R. (2009), ‘Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method’, Biometrics, 65(2):564–571] to linear regression models with grouped variables. The resulting estimator is robust to contamination or deviations in both the response and the design space.The Oracle property and asymptotic normality of the estimator are established under some regularity conditions. Simulation studies reveal that the proposed method performs better than the existing rank-based methods [Johnson, B.A., and Peng, L. (2008), ‘Rank-based Variable Selection’, Journal of Nonparametric Statistics, 20(3):241–252; Wang, L., and Li, R. (2009), ‘Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method’, Biometrics, 65(2):564–571] for grouped variables models. This estimation procedure also outperforms the adaptive hlasso [Zhou, N., and Zhu, J. (2010), ‘Group Variable Selection Via a Hierarchical Lasso and its Oracle Property’, Interface, 3(4):557–574] in the presence of local contamination in the design space or for heavy-tailed error distribution.  相似文献   

3.
Several alternative Bayes factors have been recently proposed in order to solve the problem of the extreme sensitivity of the Bayes factor to the priors of models under comparison. Specifically, the impossibility of using the Bayes factor with standard noninformative priors for model comparison has led to the introduction of new automatic criteria, such as the posterior Bayes factor (Aitkin 1991), the intrinsic Bayes factors (Berger and Pericchi 1996b) and the fractional Bayes factor (O'Hagan 1995). We derive some interesting properties of the fractional Bayes factor that provide justifications for its use additional to the ones given by O'Hagan. We further argue that the use of the fractional Bayes factor, originally introduced to cope with improper priors, is also useful in a robust analysis. Finally, using usual classes of priors, we compare several alternative Bayes factors for the problem of testing the point null hypothesis in the univariate normal model.  相似文献   

4.
Given a set of possible models for variables X and a set of possible parameters for each model, the Bayesian estimate of the probability distribution for X given observed data is obtained by averaging over the possible models and their parameters. An often-used approximation for this estimate is obtained by selecting a single model and averaging over its parameters. The approximation is useful because it is computationally efficient, and because it provides a model that facilitates understanding of the domain. A common criterion for model selection is the posterior probability of the model. Another criterion for model selection, proposed by San Martini and Spezzafari (1984), is the predictive performance of a model for the next observation to be seen. From the standpoint of domain understanding, both criteria are useful, because one identifies the model that is most likely, whereas the other identifies the model that is the best predictor of the next observation. To highlight the difference, we refer to the posterior-probability and alternative criteria as the scientific criterion (SC) and engineering criterion (EC), respectively. When we are interested in predicting the next observation, the model-averaged estimate is at least as good as that produced by EC, which itself is at least as good as the estimate produced by SC. We show experimentally that, for Bayesian-network models containing discrete variables only, the predictive performance of the model average can be significantly better than those of single models selected by either criterion, and that differences between models selected by the two criterion can be substantial.  相似文献   

5.
Motivated by examples in spectroscopy, we study variable selection for discrimination in problems with very many predictor variables. Assuming multivariate normal distributions with common variance for the predictor variables within groups, we develop a Bayesian decision theory approach that balances costs for variables against a loss due to classification errors. The approach is computationally intensive, requiring a simulation to approximate the intractable expected loss and a search, using simulated annealing, over a large space of possible subsets of variables. It is illustrated by application to a spectroscopic example with 3 groups, 100 variables, and 71 training cases, where the approach finds subsets of between 5 and 14 variables whose discriminatory power is comparable with that of linear discriminant analysis using principal components derived from the full 100 variables. We study both the evaluation of expected loss and the tuning of the simulated annealing for the example, and conclude that computational effort should be concentrated on the search.  相似文献   

6.
The authors consider the problem of simultaneous transformation and variable selection for linear regression. They propose a fully Bayesian solution to the problem, which allows averaging over all models considered including transformations of the response and predictors. The authors use the Box‐Cox family of transformations to transform the response and each predictor. To deal with the change of scale induced by the transformations, the authors propose to focus on new quantities rather than the estimated regression coefficients. These quantities, referred to as generalized regression coefficients, have a similar interpretation to the usual regression coefficients on the original scale of the data, but do not depend on the transformations. This allows probabilistic statements about the size of the effect associated with each variable, on the original scale of the data. In addition to variable and transformation selection, there is also uncertainty involved in the identification of outliers in regression. Thus, the authors also propose a more robust model to account for such outliers based on a t‐distribution with unknown degrees of freedom. Parameter estimation is carried out using an efficient Markov chain Monte Carlo algorithm, which permits moves around the space of all possible models. Using three real data sets and a simulated study, the authors show that there is considerable uncertainty about variable selection, choice of transformation, and outlier identification, and that there is advantage in dealing with all three simultaneously. The Canadian Journal of Statistics 37: 361–380; 2009 © 2009 Statistical Society of Canada  相似文献   

7.
The authors consider the problem of Bayesian variable selection for proportional hazards regression models with right censored data. They propose a semi-parametric approach in which a nonparametric prior is specified for the baseline hazard rate and a fully parametric prior is specified for the regression coefficients. For the baseline hazard, they use a discrete gamma process prior, and for the regression coefficients and the model space, they propose a semi-automatic parametric informative prior specification that focuses on the observables rather than the parameters. To implement the methodology, they propose a Markov chain Monte Carlo method to compute the posterior model probabilities. Examples using simulated and real data are given to demonstrate the methodology.  相似文献   

8.
In this article, we consider the variable selection for a class of semiparametric instrumental variable models. By combining orthogonal weighting technology and empirical likelihood method, we propose an orthogonal weighted empirical likelihood-based variable selection procedure. Under some mild conditions, the consistency and sparsity of the variable selection procedure are studied. Furthermore, some simulation studies and a real data analysis are carried out to examine the finite-sample performance of the proposed method.  相似文献   

9.
Two useful statistical methods for generating a latent variable are described and extended to incorporate polytomous data and additional covariates. Item response analysis is not well-known outside its area of application, mainly because the procedures to fit the models are computer intensive and not routinely available within general statistical software packages. The linear score technique is less computer intensive, straightforward to implement and has been proposed as a good approximation to item response analysis. Both methods have been implemented in the standard statistical software package GLIM 4.0, and are compared to determine their effectiveness.  相似文献   

10.
We study the variable selection problem for a class of generalized linear models with endogenous covariates. Based on the instrumental variable adjustment technology and the smooth-threshold estimating equation (SEE) method, we propose an instrumental variable based variable selection procedure. The proposed variable selection method can attenuate the effect of endogeneity in covariates, and is easy for application in practice. Some theoretical results are also derived such as the consistency of the proposed variable selection procedure and the convergence rate of the resulting estimator. Further, some simulation studies and a real data analysis are conducted to evaluate the performance of the proposed method, and simulation results show that the proposed method is workable.  相似文献   

11.
Summary.  The importance of variable selection in regression has grown in recent years as computing power has encouraged the modelling of data sets of ever-increasing size. Data mining applications in finance, marketing and bioinformatics are obvious examples. A limitation of nearly all existing variable selection methods is the need to specify the correct model before selection. When the number of predictors is large, model formulation and validation can be difficult or even infeasible. On the basis of the theory of sufficient dimension reduction, we propose a new class of model-free variable selection approaches. The methods proposed assume no model of any form, require no nonparametric smoothing and allow for general predictor effects. The efficacy of the methods proposed is demonstrated via simulation, and an empirical example is given.  相似文献   

12.
Summary. When a number of distinct models contend for use in prediction, the choice of a single model can offer rather unstable predictions. In regression, stochastic search variable selection with Bayesian model averaging offers a cure for this robustness issue but at the expense of requiring very many predictors. Here we look at Bayes model averaging incorporating variable selection for prediction. This offers similar mean-square errors of prediction but with a vastly reduced predictor space. This can greatly aid the interpretation of the model. It also reduces the cost if measured variables have costs. The development here uses decision theory in the context of the multivariate general linear model. In passing, this reduced predictor space Bayes model averaging is contrasted with single-model approximations. A fast algorithm for updating regressions in the Markov chain Monte Carlo searches for posterior inference is developed, allowing many more variables than observations to be contemplated. We discuss the merits of absolute rather than proportionate shrinkage in regression, especially when there are more variables than observations. The methodology is illustrated on a set of spectroscopic data used for measuring the amounts of different sugars in an aqueous solution.  相似文献   

13.
This paper considers the Bayesian model selection problem in life-time models using type-II censored data. In particular, the intrinsic Bayes factors are calculated for log-normal, exponential, and Weibull lifetime models using noninformative priors under type-II censoring. Numerical examples are given to illustrate our results.  相似文献   

14.
Autoregressive models with infinite variance are of great importance in modeling heavy-tailed time series and have been well studied. In this paper, we propose a penalized method to conduct model selection for autoregressive models with innovations having Pareto-like distributions with index α∈(0,2)α(0,2). By combining the least absolute deviation loss function and the adaptive lasso penalty, the proposed method is able to consistently identify the true model and at the same time produce efficient estimators with a convergence rate of n−1/αn1/α. In addition, our approach provides a unified way to conduct variable selection for autoregressive models with finite or infinite variance. A simulation study and a real data analysis are conducted to illustrate the effectiveness of our method.  相似文献   

15.
We propose that Bayesian variable selection for linear parametrizations with Gaussian iid likelihoods should be based on the spherical symmetry of the diagonalized parameter space. Our r-prior results in closed forms for the evidence for four examples, including the hyper-g prior and the Zellner–Siow prior, which are shown to be special cases. Scenarios of a single-variable dispersion parameter and of fixed dispersion are studied, and asymptotic forms comparable to the traditional information criteria are derived. A simulation exercise shows that model comparison based on our r-prior gives good results comparable to or better than current model comparison schemes.  相似文献   

16.
ABSTRACT

A variable selection procedure based on least absolute deviation (LAD) estimation and adaptive lasso (LAD-Lasso for short) is proposed for median regression models with doubly censored data. The proposed procedure can select significant variables and estimate the parameters simultaneously, and the resulting estimators enjoy the oracle property. Simulation results show that the proposed method works well.  相似文献   

17.
In this article, a new efficient iteration procedure based on quantile regression is developed for single-index varying-coefficient models. The proposed estimation scheme is an extension of the full iteration procedure proposed by Carroll et al., which is different with the method adopted by Wu et al. for single-index models that a double-weighted summation is used therein. This distinguish not only be the reason that undersmoothing should be a necessary condition in our proposed procedure, but also may reduce the computational burden especially for large-sample size. The resulting estimators are shown to be robust with regardless of outliers as well as varying errors. Moreover, to achieve sparsity when there exist irrelevant variables in the index parameters, a variable selection procedure combined with adaptive LASSO penalty is developed to simultaneously select and estimate significant parameters. Theoretical properties of the obtained estimators are established under some regular conditions, and some simulation studies with various distributed errors are conducted to assess the finite sample performance of our proposed method.  相似文献   

18.
In this paper, we propose a new full iteration estimation method for quantile regression (QR) of the single-index model (SIM). The asymptotic properties of the proposed estimator are derived. Furthermore, we propose a variable selection procedure for the QR of SIM by combining the estimation method with the adaptive LASSO penalized method to get sparse estimation of the index parameter. The oracle properties of the variable selection method are established. Simulations with various non-normal errors are conducted to demonstrate the finite sample performance of the estimation method and the variable selection procedure. Furthermore, we illustrate the proposed method by analyzing a real data set.  相似文献   

19.
In this article, a new composite quantile regression estimation approach is proposed for estimating the parametric part of single-index model. We use local linear composite quantile regression (CQR) for estimating the nonparametric part of single-index model (SIM) when the error distribution is symmetrical. The weighted local linear CQR is proposed for estimating the nonparametric part of SIM when the error distribution is asymmetrical. Moreover, a new variable selection procedure is proposed for SIM. Under some regularity conditions, we establish the large sample properties of the proposed estimators. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.  相似文献   

20.
Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few nonzero components, those covariates that are most important. This article extends the “global‐local” shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K‐outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient‐specific variance term that consists of a predictor‐specific factor (shared local shrinkage parameter) and a model‐specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号