首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article develops three empirical likelihood (EL) approaches to estimate parameters in nonlinear regression models in the presence of nonignorable missing responses. These are based on the inverse probability weighted (IPW) method, the augmented IPW (AIPW) method and the imputation technique. A logistic regression model is adopted to specify the propensity score. Maximum likelihood estimation is used to estimate parameters in the propensity score by combining the idea of importance sampling and imputing estimating equations. Under some regularity conditions, we obtain the asymptotic properties of the maximum EL estimators of these unknown parameters. Simulation studies are conducted to investigate the finite sample performance of our proposed estimation procedures. Empirical results provide evidence that the AIPW procedure exhibits better performance than the other two procedures. Data from a survey conducted in 2002 are used to illustrate the proposed estimation procedure. The Canadian Journal of Statistics 48: 386–416; 2020 © 2020 Statistical Society of Canada  相似文献   

2.
Biao Zhang 《Statistics》2016,50(5):1173-1194
Missing covariate data occurs often in regression analysis. We study methods for estimating the regression coefficients in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866] on regression analyses with missing covariates, in which they pioneered the use of two working models, the working propensity score model and the working conditional score model. A recent approach to missing covariate data analysis is the empirical likelihood method of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503], which effectively combines unbiased estimating equations. In this paper, we consider an alternative likelihood approach based on the full likelihood of the observed data. This full likelihood-based method enables us to generate estimators for the vector of the regression coefficients that are (a) asymptotically equivalent to those of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the working propensity score model is correctly specified, and (b) doubly robust, like the augmented inverse probability weighting (AIPW) estimators of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Am Statist Assoc. 1994;89:846–866]. Thus, the proposed full likelihood-based estimators improve on the efficiency of the AIPW estimators when the working propensity score model is correct but the working conditional score model is possibly incorrect, and also improve on the empirical likelihood estimators of Qin, Zhang and Leung [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the reverse is true, that is, the working conditional score model is correct but the working propensity score model is possibly incorrect. In addition, we consider a regression method for estimation of the regression coefficients when the working conditional score model is correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866]. Finally, we compare the finite-sample performance of various estimators in a simulation study.  相似文献   

3.
Quantitle regression (QR) is a popular approach to estimate functional relations between variables for all portions of a probability distribution. Parameter estimation in QR with missing data is one of the most challenging issues in statistics. Regression quantiles can be substantially biased when observations are subject to missingness. We study several inverse probability weighting (IPW) estimators for parameters in QR when covariates or responses are subject to missing not at random. Maximum likelihood and semiparametric likelihood methods are employed to estimate the respondent probability function. To achieve nice efficiency properties, we develop an empirical likelihood (EL) approach to QR with the auxiliary information from the calibration constraints. The proposed methods are less sensitive to misspecified missing mechanisms. Asymptotic properties of the proposed IPW estimators are shown under general settings. The efficiency gain of EL-based IPW estimator is quantified theoretically. Simulation studies and a data set on the work limitation of injured workers from Canada are used to illustrated our proposed methodologies.  相似文献   

4.
In this paper, we consider how to incorporate quantile information to improve estimator efficiency for regression model with missing covariates. We combine the quantile information with least-squares normal equations and construct an unbiased estimating equations (EEs). The lack of smoothness of the objective EEs is overcome by replacing them with smooth approximations. The maximum smoothed empirical likelihood (MSEL) estimators are established based on inverse probability weighted (IPW) smoothed EEs and their asymptotic properties are studied under some regular conditions. Moreover, we develop two novel testing procedures for the underlying model. The finite-sample performance of the proposed methodology is examined by simulation studies. A real example is used to illustrate our methods.  相似文献   

5.
Inverse probability weighting (IPW) and multiple imputation are two widely adopted approaches dealing with missing data. The former models the selection probability, and the latter models data distribution. Consistent estimation requires correct specification of corresponding models. Although the augmented IPW method provides an extra layer of protection on consistency, it is usually not sufficient in practice as the true data‐generating process is unknown. This paper proposes a method combining the two approaches in the same spirit of calibration in sampling survey literature. Multiple models for both the selection probability and data distribution can be simultaneously accounted for, and the resulting estimator is consistent if any model is correctly specified. The proposed method is within the framework of estimating equations and is general enough to cover regression analysis with missing outcomes and/or missing covariates. Results on both theoretical and numerical investigation are provided.  相似文献   

6.
We propose a profile conditional likelihood approach to handle missing covariates in the general semiparametric transformation regression model. The method estimates the marginal survival function by the Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent and asymptotically normally distributed estimator of the regression parameter when censoring is independent of the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with complete-case analysis, the proposed estimator can be more efficient when the missing data are missing completely at random and can correct bias when the missing data are missing at random. The potential application of the proposed method to the generalized probit model with missing continuous covariates is also outlined.  相似文献   

7.
Abstract. An objective of randomized placebo‐controlled preventive HIV vaccine efficacy trials is to assess the relationship between the vaccine effect to prevent infection and the genetic distance of the exposing HIV to the HIV strain represented in the vaccine construct. Motivated by this objective, recently a mark‐specific proportional hazards (PH) model with a continuum of competing risks has been studied, where the genetic distance of the transmitting strain is the continuous ‘mark’ defined and observable only in failures. A high percentage of genetic marks of interest may be missing for a variety of reasons, predominantly because rapid evolution of HIV sequences after transmission before a blood sample is drawn from which HIV sequences are measured. This research investigates the stratified mark‐specific PH model with missing marks where the baseline functions may vary with strata. We develop two consistent estimation approaches, the first based on the inverse probability weighted complete‐case (IPW) technique, and the second based on augmenting the IPW estimator by incorporating auxiliary information predictive of the mark. We investigate the asymptotic properties and finite‐sample performance of the two estimators, and show that the augmented IPW estimator, which satisfies a double robustness property, is more efficient.  相似文献   

8.
To estimate parameters defined by estimating equations with covariates missing at random, we consider three bias-corrected nonparametric approaches based on inverse probability weighting, regression and augmented inverse probability weighting. However, when the dimension of covariates is not low, the estimation efficiency will be affected due to the curse of dimensionality. To address this issue, we propose a two-stage estimation procedure by using the dimension-reduced kernel estimation in conjunction with bias-corrected estimating equations. We show that the resulting three estimators are asymptotically equivalent and achieve the desirable properties. The impact of dimension reduction in nonparametric estimation of parameters is also investigated. The finite-sample performance of the proposed estimators is studied through simulation, and an application to an automobile data set is also presented.  相似文献   

9.
Information from multiple informants is frequently used to assess psychopathology. We consider marginal regression models with multiple informants as discrete predictors and a time to event outcome. We fit these models to data from the Stirling County Study; specifically, the models predict mortality from self report of psychiatric disorders and also predict mortality from physician report of psychiatric disorders. Previously, Horton et al. found little relationship between self and physician reports of psychopathology, but that the relationship of self report of psychopathology with mortality was similar to that of physician report of psychopathology with mortality. Generalized estimating equations (GEE) have been used to fit marginal models with multiple informant covariates; here we develop a maximum likelihood (ML) approach and show how it relates to the GEE approach. In a simple setting using a saturated model, the ML approach can be constructed to provide estimates that match those found using GEE. We extend the ML technique to consider multiple informant predictors with missingness and compare the method to using inverse probability weighted (IPW) GEE. Our simulation study illustrates that IPW GEE loses little efficiency compared with ML in the presence of monotone missingness. Our example data has non-monotone missingness; in this case, ML offers a modest decrease in variance compared with IPW GEE, particularly for estimating covariates in the marginal models. In more general settings, e.g., categorical predictors and piecewise exponential models, the likelihood parameters from the ML technique do not have the same interpretation as the GEE. Thus, the GEE is recommended to fit marginal models for its flexibility, ease of interpretation and comparable efficiency to ML in the presence of missing data.  相似文献   

10.
Under the case-cohort design introduced by Prentice (Biometrica 73:1–11, 1986), the covariate histories are ascertained only for the subjects who experience the event of interest (i.e., the cases) during the follow-up period and for a relatively small random sample from the original cohort (i.e., the subcohort). The case-cohort design has been widely used in clinical and epidemiological studies to assess the effects of covariates on failure times. Most statistical methods developed for the case-cohort design use the proportional hazards model, and few methods allow for time-varying regression coefficients. In addition, most methods disregard data from subjects outside of the subcohort, which can result in inefficient inference. Addressing these issues, this paper proposes an estimation procedure for the semiparametric additive hazards model with case-cohort/two-phase sampling data, allowing the covariates of interest to be missing for cases as well as for non-cases. A more flexible form of the additive model is considered that allows the effects of some covariates to be time varying while specifying the effects of others to be constant. An augmented inverse probability weighted estimation procedure is proposed. The proposed method allows utilizing the auxiliary information that correlates with the phase-two covariates to improve efficiency. The asymptotic properties of the proposed estimators are established. An extensive simulation study shows that the augmented inverse probability weighted estimation is more efficient than the widely adopted inverse probability weighted complete-case estimation method. The method is applied to analyze data from a preventive HIV vaccine efficacy trial.  相似文献   

11.
In survival analysis, covariate measurements often contain missing observations; ignoring this feature can lead to invalid inference. We propose a class of weighted estimating equations for right‐censored data with missing covariates under semiparametric transformation models. Time‐specific and subject‐specific weights are accommodated in the formulation of the weighted estimating equations. We establish unified results for estimating missingness probabilities that cover both parametric and non‐parametric modelling schemes. To improve estimation efficiency, the weighted estimating equations are augmented by a new set of unbiased estimating equations. The resultant estimator has the so‐called ‘double robustness’ property and is optimal within a class of consistent estimators.  相似文献   

12.
Inverse probability weighting (IPW) can deal with confounding in non randomized studies. The inverse weights are probabilities of treatment assignment (propensity scores), estimated by regressing assignment on predictors. Problems arise if predictors can be missing. Solutions previously proposed include assuming assignment depends only on observed predictors and multiple imputation (MI) of missing predictors. For the MI approach, it was recommended that missingness indicators be used with the other predictors. We determine when the two MI approaches, (with/without missingness indicators) yield consistent estimators and compare their efficiencies.We find that, although including indicators can reduce bias when predictors are missing not at random, it can induce bias when they are missing at random. We propose a consistent variance estimator and investigate performance of the simpler Rubin’s Rules variance estimator. In simulations we find both estimators perform well. IPW is also used to correct bias when an analysis model is fitted to incomplete data by restricting to complete cases. Here, weights are inverse probabilities of being a complete case. We explain how the same MI methods can be used in this situation to deal with missing predictors in the weight model, and illustrate this approach using data from the National Child Development Survey.  相似文献   

13.
Many analyses for incomplete longitudinal data are directed to examining the impact of covariates on the marginal mean responses. We consider the setting in which longitudinal responses are collected from individuals nested within clusters. We discuss methods for assessing covariate effects on the mean and association parameters when covariates are incompletely observed. Weighted first and second order estimating equations are constructed to obtain consistent estimates of mean and association parameters when covariates are missing at random. Empirical studies demonstrate that estimators from the proposed method have negligible finite sample biases in moderate samples. An application to the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) demonstrates the utility of the proposed method.  相似文献   

14.
Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.  相似文献   

15.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

16.
Abstract. The Buckley–James estimator (BJE) is a well‐known estimator for linear regression models with censored data. Ritov has generalized the BJE to a semiparametric setting and demonstrated that his class of Buckley–James type estimators is asymptotically equivalent to the class of rank‐based estimators proposed by Tsiatis. In this article, we revisit such relationship in censored data with covariates missing by design. By exploring a similar relationship between our proposed class of Buckley–James type estimating functions to the class of rank‐based estimating functions recently generalized by Nan, Kalbfleisch and Yu, we establish asymptotic properties of our proposed estimators. We also conduct numerical studies to compare asymptotic efficiencies from various estimators.  相似文献   

17.
Semiparametric accelerated failure time (AFT) models directly relate the expected failure times to covariates and are a useful alternative to models that work on the hazard function or the survival function. For case-cohort data, much less development has been done with AFT models. In addition to the missing covariates outside of the sub-cohort in controls, challenges from AFT model inferences with full cohort are retained. The regression parameter estimator is hard to compute because the most widely used rank-based estimating equations are not smooth. Further, its variance depends on the unspecified error distribution, and most methods rely on computationally intensive bootstrap to estimate it. We propose fast rank-based inference procedures for AFT models, applying recent methodological advances to the context of case-cohort data. Parameters are estimated with an induced smoothing approach that smooths the estimating functions and facilitates the numerical solution. Variance estimators are obtained through efficient resampling methods for nonsmooth estimating functions that avoids full blown bootstrap. Simulation studies suggest that the recommended procedure provides fast and valid inferences among several competing procedures. Application to a tumor study demonstrates the utility of the proposed method in routine data analysis.  相似文献   

18.
A popular choice when analyzing ordinal data is to consider the cumulative proportional odds model to relate the marginal probabilities of the ordinal outcome to a set of covariates. However, application of this model relies on the condition of identical cumulative odds ratios across the cut-offs of the ordinal outcome; the well-known proportional odds assumption. This paper focuses on the assessment of this assumption while accounting for repeated and missing data. In this respect, we develop a statistical method built on multiple imputation (MI) based on generalized estimating equations that allows to test the proportionality assumption under the missing at random setting. The performance of the proposed method is evaluated for two MI algorithms for incomplete longitudinal ordinal data. The impact of both MI methods is compared with respect to the type I error rate and the power for situations covering various numbers of categories of the ordinal outcome, sample sizes, rates of missingness, well-balanced and skewed data. The comparison of both MI methods with the complete-case analysis is also provided. We illustrate the use of the proposed methods on a quality of life data from a cancer clinical trial.  相似文献   

19.
An objective of randomized placebo-controlled preventive HIV vaccine efficacy (VE) trials is to assess the relationship between vaccine effects to prevent HIV acquisition and continuous genetic distances of the exposing HIVs to multiple HIV strains represented in the vaccine. The set of genetic distances, only observed in failures, is collectively termed the ‘mark.’ The objective has motivated a recent study of a multivariate mark-specific hazard ratio model in the competing risks failure time analysis framework. Marks of interest, however, are commonly subject to substantial missingness, largely due to rapid post-acquisition viral evolution. In this article, we investigate the mark-specific hazard ratio model with missing multivariate marks and develop two inferential procedures based on (i) inverse probability weighting (IPW) of the complete cases, and (ii) augmentation of the IPW estimating functions by leveraging auxiliary data predictive of the mark. Asymptotic properties and finite-sample performance of the inferential procedures are presented. This research also provides general inferential methods for semiparametric density ratio/biased sampling models with missing data. We apply the developed procedures to data from the HVTN 502 ‘Step’ HIV VE trial.  相似文献   

20.
A mean residual life function (MRLF) is the remaining life expectancy of a subject who has survived to a certain time point. In the presence of covariates, regression models are needed to study the association between the MRLFs and covariates. If the survival time tends to be too long or the tail is not observed, the restricted mean residual life must be considered. In this paper, we propose the proportional restricted mean residual life model for fitting survival data under right censoring. For inference on the model parameters, martingale estimating equations are developed, and the asymptotic properties of the proposed estimators are established. In addition, a class of goodness-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and the approach is applied to a set of real life data collected from a randomized clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号