首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although some major risk studies have been done for Campylobacter jejuni, its dose response is not well characterized. Only a single human study is available, providing dose-response information for only a single isolate. As substantial heterogeneity in infectivity has been acknowledged for other pathogens, it remains unknown how well this single study represents the dose-response relation for this pathogen. As future human challenge studies with Campylobacter are unlikely, we have to find other means of studying its infectivity. Several dose-response studies have been done using chickens as host organisms. These studies may be used to obtain quantitative information on the variation in infectivity among different isolates of this pathogen. A hierarchical Bayesian model is well suited to describe heterogeneity, and we demonstrate how the beta-Poisson model of microbial infection may be adapted to allow for within- and between-isolate variation. Isolates tested in chickens can be categorized into two distinct groups: lab-adapted and fresh isolates, and we show how the hierarchical dose-response model can be used to quantitatively describe their differences. Fresh isolates show higher colonization potential and less within-isolate variation than lab isolates. The results indicate that Campylobacter jejuni is highly infectious in chickens. Different isolates show great variation in infectivity, especially between lab and fresh isolates, indicating that human clinical (volunteer) studies on infectivity must be interpreted cautiously.  相似文献   

2.
Elodie Adida 《Risk analysis》2011,31(10):1622-1631
An effective nonpharmaceutical intervention for influenza interrupts an exposure route that contributes significantly to infection risk. Herein, we use uncertainty analysis (point‐interval method) and Monte Carlo simulation to explore the magnitude of infection risk and predominant route of exposure. We utilized a previously published mathematical model of a susceptible person attending a bed‐ridden infectious person. Infection risk is sensitive to the magnitude of virus emission and contact rates. The contribution of droplet spray exposure to infection risk increases with cough frequency, and decreases with virus concentration in cough particles. We consider two infectivity scenarios: greater infectivity of virus deposited in the upper respiratory tract than virus inhaled in respirable aerosols, based on human studies; and equal infectivity in the two locations, based on studies in guinea pigs. Given that virus have equal probability of infection throughout the respiratory tract, the mean overall infection risk is 9.8 × 10?2 (95th percentile 0.78). However, when virus in the upper respiratory tract is less infectious than inhaled virus, the overall infection risk is several orders of magnitude lower. In this event, inhalation is a significant exposure route. Contact transmission is important in both infectivity scenarios. The presence of virus in only respirable particles increases the mean overall infection risk by 1–3 orders of magnitude, with inhalation contributing ≥ 99% of the infection risk. The analysis indicates that reduction of uncertainties in the concentration of virus in expiratory particles of different sizes, expiratory event frequency, and infectivity at different sites in the respiratory tract will clarify the predominate exposure routes for influenza.  相似文献   

3.
This study illustrates the effect of virus detection methods on estimates of risks of infection of biosolids-associated viruses for occupational workers and residential population during a hypothetical exposure of biosolids. Five gastroenteritis-associated human enteric viruses--enteroviruses (echovirus-12, enteroviruse types 68-71), adenoviruses, rotaviruses, and noroviruses genotype--I-were considered to represent human enteric viruses for risk estimation purposes. Ingested viral doses were calculated using literature-reported total infectious virus concentrations (based on BGM and A549 cell lines) and genome copies (GCs) in Michigan dewatered and class B biosolids. Cell-line-based infectivity parameters (i.e., ratio of total infectious virus concentration to GCs) were developed for different viruses in biosolids to use GCs for calculating ingested viral dose, addressing the issue of integration of molecular methods with biosolids-based virus risk assessment. Use of virus concentrations from molecular methods (with and without using cell-line-based infectivity parameter) resulted in higher risk estimates than culture methods, indicating the effect of the virus detection method on risk estimates. Further, use of virus concentrations from A549 cell lines resulted in higher risk estimates compared to those from BGM cell lines, suggesting the need for a proper choice of cell lines in determining infectious viral dose. The Monte Carlo uncertainty analyses of estimates for risk of infection due to enteroviruses showed that enteroviruses concentration was the most important parameter influencing risk estimates, indicating the need for reducing associated uncertainty. More work is required to develop cell-line-based infectivity parameters for different virus concentration levels and sample matrix types using a cut-off-based approach.  相似文献   

4.
Our objective was to evaluate the effect that complexity in the form of different levels of spatial, population, and contact heterogeneity has in the predictions of a mechanistic epidemic model. A model that simulates the spatiotemporal spread of infectious diseases between animal populations was developed. Sixteen scenarios of foot‐and‐mouth disease infection in cattle were analyzed, involving combinations of the following factors: multiple production‐types (PT) with heterogeneous contact and population structure versus single PT, random versus actual spatial distribution of population units, high versus low infectivity, and no vaccination versus preemptive vaccination. The epidemic size and duration was larger for scenarios with multiple PT versus single PT. Ignoring the actual unit locations did not affect the epidemic size in scenarios with multiple PT/high infectivity, but resulted in smaller epidemic sizes in scenarios using multiple PT/low infectivity. In conclusion, when modeling fast‐spreading epidemics, knowing the actual locations of population units may not be as relevant as collecting information on population and contact heterogeneity. In contrast, both population and spatial heterogeneity might be important to model slower spreading epidemic diseases. Our findings can be used to inform data collection and modeling efforts to inform health policy and planning.  相似文献   

5.
Exposure Assessment of TSEs from the Landspreading of Meat and Bone Meal   总被引:1,自引:0,他引:1  
Recent changes in European legislation have meant that certain processed abattoir waste, which has been appropriately heat treated and ground to a specified particle size, can be spread on nonpasture agricultural land. This has opened the way for the potential landspreading of mammalian meat and bone meal (mMBM) derived from animals slaughtered for human consumption. This article reports on two separate case studies (Study 1 carried out in Great Britain (GB) and Study 2 carried out in Ireland) on the potential exposure to TSE infectivity following the spreading of abattoir waste (derived from animals slaughtered for human consumption) on nonpasture agricultural land. For Study 1, the average TSE infectivity on nonpasture agricultural land per year from sheep with scrapie was found to be higher (five orders of magnitude) than that estimated for BSE in cattle (3.9 x 10(-3) Ovine Oral ID(50)/ton of soil compared to 3.3 x 10(-8) Bovine Oral ID(50)/ton of soil). The mean estimate for BSE in sheep was 8.1 x 10(-6) Ovine Oral ID(50)/ton of soil. The mean level of infectivity in mMBM was assessed to be 1.2 x 10(-5) and 2.36 x 10(-5) ID(50)/ton of mMBM for Study 1 and 2, respectively. For Study 2 the spreading of mMBM was estimated to result in infectivity on nonpasture land of 1.62 x 10(-8) Bovine Oral ID(50)/m(3). The mean simulated probability of infection per year per bovine animal was 1.11 x 10(-9). Given the low infectivity density and corresponding low risks to bovines the spreading of mMBM could be considered a viable alternative for the utilization of mMBM.  相似文献   

6.
The relative contribution of four influenza virus exposure pathways—(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes—must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 106 mL−1, pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 106 mL−1, pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.  相似文献   

7.
The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity ( Qinf ) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Qinf is extremely small (median = 6.5 × 10−12 ID50; mean = 1.8 × 10−4 ID50), corresponding to an average probability of 1.3 × 10−4 that an incident results in ≥1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.  相似文献   

8.
Cryptosporidium human dose‐response data from seven species/isolates are used to investigate six models of varying complexity that estimate infection probability as a function of dose. Previous models attempt to explicitly account for virulence differences among C. parvum isolates, using three or six species/isolates. Four (two new) models assume species/isolate differences are insignificant and three of these (all but exponential) allow for variable human susceptibility. These three human‐focused models (fractional Poisson, exponential with immunity and beta‐Poisson) are relatively simple yet fit the data significantly better than the more complex isolate‐focused models. Among these three, the one‐parameter fractional Poisson model is the simplest but assumes that all Cryptosporidium oocysts used in the studies were capable of initiating infection. The exponential with immunity model does not require such an assumption and includes the fractional Poisson as a special case. The fractional Poisson model is an upper bound of the exponential with immunity model and applies when all oocysts are capable of initiating infection. The beta Poisson model does not allow an immune human subpopulation; thus infection probability approaches 100% as dose becomes huge. All three of these models predict significantly (>10x) greater risk at the low doses that consumers might receive if exposed through drinking water or other environmental exposure (e.g., 72% vs. 4% infection probability for a one oocyst dose) than previously predicted. This new insight into Cryptosporidium risk suggests additional inactivation and removal via treatment may be needed to meet any specified risk target, such as a suggested 10?4 annual risk of Cryptosporidium infection.  相似文献   

9.
Journal of Combinatorial Optimization - Network interdiction problems by upgading critical edges/nodes have important applications to reduce the infectivity of the COVID-19. A network of confirmed...  相似文献   

10.
11.
In this article the development and parameterization of a quantitative assessment is described that estimates the amount of TSE infectivity that is present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for cattle and classical/atypical scrapie for sheep and lambs) and the amounts that subsequently fall to the floor during processing at facilities that handle specified risk material (SRM). BSE in cattle was found to contain the most oral doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep infected with classical and atypical scrapie, respectively. Lambs contained the least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity falling to the floor and entering the drains from slaughtering a whole carcass at SRM facilities were found to be from cattle infected with BSE at rendering and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains are from lambs infected with classical and atypical scrapie at intermediate plants and atypical scrapie at collection centers with a mean of 3 × 10?7 OO ID50s (2 × 10?8, 1 × 10?6) per carcass. The results of this model provide key inputs for the model in the companion paper published here.  相似文献   

12.
In order to develop a dose‐response model for SARS coronavirus (SARS‐CoV), the pooled data sets for infection of transgenic mice susceptible to SARS‐CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta‐Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 × l02) could describe the dose‐response relationship of the pooled data sets. The beta‐Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS‐CoV was calculated and compared with those of other coronaviruses. The does of SARS‐CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV‐229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS‐CoV for apartment residents during the outbreak, which was back‐calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose‐response model for SARS‐CoV at the present and would enable us to understand the possibility for reemergence of SARS.  相似文献   

13.
To date, the variant Creutzfeldt‐Jakob disease (vCJD) risk assessments that have been performed have primarily focused on predicting future vCJD cases in the United Kingdom, which underwent a bovine spongiform encephalopathy (BSE) epidemic between 1980 and 1996. Surveillance of potential BSE cases was also used to assess vCJD risk, especially in other BSE‐prevalent EU countries. However, little is known about the vCJD risk for uninfected individuals who accidentally consume BSE‐contaminated meat products in or imported from a country with prevalent BSE. In this article, taking into account the biological mechanism of abnormal prion PrPres aggregation in the brain, the probability of exposure, and the expected amount of ingested infectivity, we establish a stochastic mean exponential growth model of lifetime exposure through dietary intake. Given the findings that BSE agents behave similarly in humans and macaques, we obtained parameter estimates from experimental macaque data. We then estimated the accumulation of abnormal prions to assess lifetime risk of developing clinical signs of vCJD. Based on the observed number of vCJD cases and the estimated number of exposed individuals during the BSE epidemic period from 1980 to 1996 in the United Kingdom, an exposure threshold hypothesis is proposed. Given the age‐specific risk of infection, the hypothesis explains the observations very well from an extreme‐value distribution fitting of the estimated BSE infectivity exposure. The current BSE statistics in the United Kingdom are provided as an example.  相似文献   

14.
Reported data sets on infection of volunteers challenged with wild-type influenza A virus at graded doses are few. Alternatively, we aimed at developing a dose-response assessment for this virus based on the data sets for its live attenuated reassortants. Eleven data sets for live attenuated reassortants that were fit to beta-Poisson and exponential dose-response models. Dose-response relationships for those reassortants were characterized by pooling analysis of the data sets with respect to virus subtype (H1N1 or H3N2), attenuation method (cold-adapted or avian-human gene reassortment), and human age (adults or children). Furthermore, by comparing the above data sets to a limited number of reported data sets for wild-type virus, we quantified the degree of attenuation of wild-type virus with gene reassortment and estimated its infectivity. As a result, dose-response relationships of all reassortants were best described by a beta-Poisson model. Virus subtype and human age were significant factors determining the dose-response relationship, whereas attenuation method affected only the relationship of H1N1 virus infection to adults. The data sets for H3N2 wild-type virus could be pooled with those for its reassortants on the assumption that the gene reassortment attenuates wild-type virus by at least 63 times and most likely 1,070 times. Considering this most likely degree of attenuation, 10% infectious dose of H3N2 wild-type virus for adults was estimated at 18 TCID50 (95% CI = 8.8-35 TCID50). The infectivity of wild-type H1N1 virus remains unknown as the data set pooling was unsuccessful.  相似文献   

15.
Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data   总被引:1,自引:0,他引:1  
In 1996, an outbreak of E. coli O157:H7-associated illness occurred in an elementary school in Japan. This outbreak has been studied in unusual detail, making this an important case for quantitative risk assessment. The availability of stored samples of the contaminated food allowed reliable estimation of exposure to the pathogens. Collection of fecal samples allowed assessment of the numbers infected, including asymptomatic cases. Comparison to other published dose-response studies for E. coli O157:H7 show that the strain that caused the outbreak studied here must have been considerably more infectious. We use this well-documented incident as an example to demonstrate how such information on the response to a single dose can be used for dose-response assessment. In particular, we demonstrate how the high infectivity limits the uncertainty in the low-dose region.  相似文献   

16.
研究基于风险环境的企多层交叉信用评分模型与信用评级方法,解决同一地区具有多个地域、多个行业和多个企业的企业、行业和地域等具有二级或以上层级结构的企业、行业和地域信用评级问题.定义了地域信用形象,针对同一地域同一行业、不同地域同一行业、同一地域不同行业和不同地域不同行业等4种不同的企业层级结构,分别建立了企业信用评分模型、行业信用评分模型和地域信用评分模型,用以对企业、行业和地域进行信用评级.以某一地区某一行业的集团公司进行项目贷款申请为例,假定该公司同时在"好"、"中"和"差"3个不同的经济发展区域分别建立3个子公司,并分别计算了该公司及其3个子公司在不同地域信用环境影响下的信用评分值,然后综合计算了在不同地域同一行业下的具有多层级结构的公司多级信用评分值,给出公司相应的信用评级结果和银行相应的信贷策略.最后还给出了集团公司具有贷款申请资格的数值条件.该方法对集团公司的信用评级方法以及银行对集团公司的信贷策略及相应决策具有科学参考依据.  相似文献   

17.
18.
Face masks have traditionally been used in general infection control, but their efficacy at the population level in preventing transmission of influenza viruses has not been studied in detail. Data from published clinical studies indicate that the infectivity of influenza A virus is probably very high, so that transmission of infection may involve low doses of virus. At low doses, the relation between dose and the probability of infection is approximately linear, so that the reduction in infection risk is proportional to the reduction in exposure due to particle retention of the mask. A population transmission model was set up to explore the impact of population‐wide mask use, allowing estimation of the effects of mask efficacy and coverage (fraction of the population wearing masks) on the basic reproduction number and the infection attack rate. We conclude that population‐wide use of face masks could make an important contribution in delaying an influenza pandemic. Mask use also reduces the reproduction number, possibly even to levels sufficient for containing an influenza outbreak.  相似文献   

19.
Since the National Food Safety Initiative of 1997, risk assessment has been an important issue in food safety areas. Microbial risk assessment is a systematic process for describing and quantifying a potential to cause adverse health effects associated with exposure to microorganisms. Various dose-response models for estimating microbial risks have been investigated. We have considered four two-parameter models and four three-parameter models in order to evaluate variability among the models for microbial risk assessment using infectivity and illness data from studies with human volunteers exposed to a variety of microbial pathogens. Model variability is measured in terms of estimated ED01s and ED10s, with the view that these effective dose levels correspond to the lower and upper limits of the 1% to 10% risk range generally recommended for establishing benchmark doses in risk assessment. Parameters of the statistical models are estimated using the maximum likelihood method. In this article a weighted average of effective dose estimates from eight two- and three-parameter dose-response models, with weights determined by the Kullback information criterion, is proposed to address model uncertainties in microbial risk assessment. The proposed procedures for incorporating model uncertainties and making inferences are illustrated with human infection/illness dose-response data sets.  相似文献   

20.
Charles N. Haas 《Risk analysis》2011,31(10):1576-1596
Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose‐response relationship of this microbe necessary. Through an extensive peer‐reviewed literature search, candidate dose‐response data were appraised so as to surpass certain standards for quality. The statistical programming language, “R,” was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta‐Poisson (widely used for quantitative risk assessment) to dose‐response data. Dose‐response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose‐response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony‐forming units (CFU) dose of Br. suis, much less than the N50 dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N50 dose was higher, 1,840 CFU. A dose‐response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号