首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Abstract.  In an adaptive clinical trial research, it is common to use certain data-dependent design weights to assign individuals to treatments so that more study subjects are assigned to the better treatment. These design weights must also be used for consistent estimation of the treatment effects as well as the effects of the other prognostic factors. In practice, there are however situations where it may be necessary to collect binary responses repeatedly from an individual over a period of time and to obtain consistent estimates for the treatment effect as well as the effects of the other covariates in such a binary longitudinal set up. In this paper, we introduce a binary response-based longitudinal adaptive design for the allocation of individuals to a better treatment and propose a weighted generalized quasi-likelihood approach for the consistent and efficient estimation of the regression parameters including the treatment effects.  相似文献   

5.
6.
7.
8.
Optimal response-adaptive designs in Phase III clinical trial set up are becoming more and more current interest. In the present article, an optimal response-adaptive design is introduced for more than two treatments at hand. We minimize an objective function subject to more than one inequality constraints. For this purpose, we propose an extensive computer search algorithm. The proposed procedure is illustrated with extensive numerical computation and simulations. Some real data set is used to illustrate the proposed methodology.  相似文献   

9.
This article develops a functional form of the generalized Poisson regression model that parametrically nests the Poisson and the two well known generalized Poisson regression models (GP-1 and GP-2). The proposed model is applied on the Malaysian motor insurance claim count data.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The last decade saw enormous progress in the development of causal inference tools to account for noncompliance in randomized clinical trials. With survival outcomes, structural accelerated failure time (SAFT) models enable causal estimation of effects of observed treatments without making direct assumptions on the compliance selection mechanism. The traditional proportional hazards model has however rarely been used for causal inference. The estimator proposed by Loeys and Goetghebeur (2003, Biometrics vol. 59 pp. 100–105) is limited to the setting of all or nothing exposure. In this paper, we propose an estimation procedure for more general causal proportional hazards models linking the distribution of potential treatment-free survival times to the distribution of observed survival times via observed (time-constant) exposures. Specifically, we first build models for observed exposure-specific survival times. Next, using the proposed causal proportional hazards model, the exposure-specific survival distributions are backtransformed to their treatment-free counterparts, to obtain – after proper mixing – the unconditional treatment-free survival distribution. Estimation of the parameter(s) in the causal model is then based on minimizing a test statistic for equality in backtransformed survival distributions between randomized arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号