首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology.  相似文献   

2.
In this paper we propose a smooth nonparametric estimation for the conditional probability density function based on a Bernstein polynomial representation. Our estimator can be written as a finite mixture of beta densities with data-driven weights. Using the Bernstein estimator of the conditional density function, we derive new estimators for the distribution function and conditional mean. We establish the asymptotic properties of the proposed estimators, by proving their asymptotic normality and by providing their asymptotic bias and variance. Simulation results suggest that the proposed estimators can outperform the Nadaraya–Watson estimator and, in some specific setups, the local linear kernel estimators. Finally, we use our estimators for modeling the income in Italy, conditional on year from 1951 to 1998, and have another look at the well known Old Faithful Geyser data.  相似文献   

3.
We consider nonparametric estimation of the density function and its derivatives for multivariate linear processes with long-range dependence. In a first step, the asymptotic distribution of the multivariate empirical process is derived. In a second step, the asymptotic distribution of kernel density estimators and their derivatives is obtained.  相似文献   

4.
In some experiments, such as destructive stress testing and industrial quality control experiments, only values smaller than all previous ones are observed. Here, for such record-breaking data, kernel estimation of the cumulative distribution function and smooth density estimation is considered. For a single record-breaking sample, consistent estimation is not possible, and replication is required for global results. For m independent record-breaking samples, the proposed distribution function and density estimators are shown to be strongly consistent and asymptotically normal as m → ∞. Also, for small m, the mean squared errors and biases of the estimators and their smoothing parameters are investigated through computer simulations.  相似文献   

5.
Existing estimators of a finite population distribution function that utilize auxiliary information are often constructed by a point wise argument. As a result, these estimators are not always monotone. We adopt a functional approach to the problem and propose two estimators based on compositions of functions. Asymptotic variance formulae are derived for the proposed es-timators. Comparisons are made with existing estimators in a simulation study using three natural populations.  相似文献   

6.
Continuous data are often measured or used in binned or rounded form. In this paper we follow up on Hall's work analyzing the effect of using equally-spaced binned data in a kernel density estimator. It is shown that a surprisingly large amount of binning does not adversely affect the integrated mean squared error of a kernel estimate.  相似文献   

7.
Problems with truncated data arise frequently in survival analyses and reliability applications. The estimation of the density function of the lifetimes is often of interest. In this article, the estimation of density function by the kernel method is considered, when truncated data are showing some kind of dependence. We apply the strong Gaussian approximation technique to study the strong uniform consistency for kernel estimators of the density function under a truncated dependent model. We also apply the strong approximation results to study the integrated square error properties of the kernel density estimators under the truncated dependent scheme.  相似文献   

8.
There is much literature on statistical inference for distribution under missing data, but surprisingly very little previous attention has been paid to missing data in the context of estimating distribution with auxiliary information. In this article, the auxiliary information with missing data is proposed. We use Zhou, Wan and Wang's method (2008) to mitigate the effects of missing data through a reformulation of the estimating equations, imputed through a semi-parametric procedure. Whence we can estimate distribution and the τth quantile of the distribution by taking auxiliary information into account. Asymptotic properties of the distribution estimator and corresponding sample quantile are derived and analyzed. The distribution estimators based on our method are found to significantly outperform the corresponding estimators without auxiliary information. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators.  相似文献   

9.
Nonparametric estimation of the probability density function f° of a lifetime distribution based on arbitrarily right-censor-ed observations from f° has been studied extensively in recent years. In this paper the density estimators from censored data that have been obtained to date are outlined. Histogram, kernel-type, maximum likelihood, series-type, and Bayesian nonparametric estimators are included. Since estimation of the hazard rate function can be considered as giving a density estimate, all known results concerning nonparametric hazard rate estimation from censored samples are also briefly mentioned.  相似文献   

10.
We present a local density estimator based on first-order statistics. To estimate the density at a point, x, the original sample is divided into subsets and the average minimum sample distance to x over all such subsets is used to define the density estimate at x. The tuning parameter is thus the number of subsets instead of the typical bandwidth of kernel or histogram-based density estimators. The proposed method is similar to nearest-neighbor density estimators but it provides smoother estimates. We derive the asymptotic distribution of this minimum sample distance statistic to study globally optimal values for the number and size of the subsets. Simulations are used to illustrate and compare the convergence properties of the estimator. The results show that the method provides good estimates of a wide variety of densities without changes of the tuning parameter, and that it offers competitive convergence performance.  相似文献   

11.
We investigate the asymptotic behaviour of binned kernel density estimators for dependent and locally non-stationary random fields converging to stationary random fields. We focus on the study of the bias and the asymptotic normality of the estimators. A simulation experiment conducted shows that both the kernel density estimator and the binned kernel density estimator have the same behavior and both estimate accurately the true density when the number of fields increases. We apply our results to the 2002 incidence rates of tuberculosis in the departments of France.  相似文献   

12.
In this article, we propose a nonparametric estimator for percentiles of the time-to-failure distribution obtained from a linear degradation model using the kernel density method. The properties of the proposed kernel estimator are investigated and compared with well-known maximum likelihood and ordinary least squares estimators via a simulation technique. The mean squared error and the length of the bootstrap confidence interval are used as the basis criteria of the comparisons. The simulation study shows that the performance of the kernel estimator is acceptable as a general estimator. When the distribution of the data is assumed to be known, the maximum likelihood and ordinary least squares estimators perform better than the kernel estimator, while the kernel estimator is superior when the assumption of our knowledge of the data distribution is violated. A comparison among different estimators is achieved using a real data set.  相似文献   

13.
We introduce an estimator for the population mean based on maximizing likelihoods formed from a symmetric kernel density estimate. Due to these origins, we have dubbed the estimator the symmetric maximum kernel likelihood estimate (smkle). A speedy computational method to compute the smkle based on binning is implemented in a simulation study which shows that the smkle at an optimal bandwidth is decidedly superior in terms of efficiency to the sample mean and other measures of location for heavy-tailed symmetric distributions. An empirical rule and a computational method to estimate this optimal bandwidth are developed and used to construct bootstrap confidence intervals for the population mean. We show that the intervals have approximately nominal coverage and have significantly smaller average width than the corresponding intervals for other measures of location.  相似文献   

14.
ABSTRACT

We study the estimation of a hazard rate function based on censored data by non-linear wavelet method. We provide an asymptotic formula for the mean integrated squared error (MISE) of nonlinear wavelet-based hazard rate estimators under randomly censored data. We show this MISE formula, when the underlying hazard rate function and censoring distribution function are only piecewise smooth, has the same expansion as analogous kernel estimators, a feature not available for the kernel estimators. In addition, we establish an asymptotic normality of the nonlinear wavelet estimator.  相似文献   

15.
We study the detailed structure (in a large sample) of the self-consistent estimators of the survival functions with doubly censored data. We also introduce the kernel-type density estimators based on the self-consistent estimators, and using our results on the structure of the self-consistent estimators, we establish the strong uniform consistency and the asymptotic normality of the kernel density estimators for doubly censored data. From these, the strong uniform consistency and the asymptotic normality of the failure rate estimators for doubly censored data are derived.  相似文献   

16.
In this article, we propose a nonparametric approach for estimating the intensity function of temporal point processes based on kernel estimators. In particular, we use asymmetric kernel estimators characterized by the gamma distribution, in order to describe features of observed point patterns adequately. Some characteristics of these estimators are analyzed and discussed both through simulated results and applications to real data from different seismic catalogs.  相似文献   

17.
In this paper, we propose two kernel density estimators based on a bias reduction technique. We study the properties of these estimators and compare them with Parzen–Rosenblatt's density estimator and Mokkadem, A., Pelletier, M., and Slaoui, Y. (2009, ‘The stochastic approximation method for the estimation of a multivariate probability density’, J. Statist. Plann. Inference, 139, 2459–2478) is density estimators. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators and the asymptotic MISE (Mean Integrated Squared Error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations.  相似文献   

18.
A new nonparametric quantile regression method based on the concept of optimal quantization was developed recently and was showed to provide estimators that often dominate their classical, kernel-type, competitors. In the present work, we extend this method to multiple-output regression problems. We show how quantization allows approximating population multiple-output regression quantiles based on halfspace depth. We prove that this approximation becomes arbitrarily accurate as the size of the quantization grid goes to infinity. We also derive a weak consistency result for a sample version of the proposed regression quantiles. Through simulations, we compare the performances of our estimators with (local constant and local bilinear) kernel competitors. The results reveal that the proposed quantization-based estimators, which are local constant in nature, outperform their kernel counterparts and even often dominate their local bilinear kernel competitors. The various approaches are also compared on artificial and real data.  相似文献   

19.
For density and distribution functions supported on [0,1], Bernstein polynomial estimators are known to have optimal mean integrated squared error (MISE) properties under the usual smoothness conditions on the function to be estimated. These estimators are also known to be well-behaved in terms of bias: they have uniform bias over the entire unit interval. What is less known, however, is that some of these estimators do experience a boundary effect, but of a different nature than what is seen with the usual kernel estimators.  相似文献   

20.
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号